Ремонт импульсного блока питания

Содержание
  1. Ремонт импульсных блоков питания своими руками
  2. Диагностика неисправностей импульсных блоков питания
  3. Ремонт блоков ИБП компьютеров и телевизоров
  4. Техника безопасности при ремонте импульсного блока питания
  5. Методика ремонта импульсного блока питания: определяем неисправности — ищем пути решения
  6. Алгоритм поиска неисправностей блока питания, связанных с предохранителем
  7. Что делать, если нет выходного напряжения?
  8. Особенности ремонта импульсного блока питания DVD на видео
  9. Ремонтируем импульсный источник питания сами, своими руками. Неисправности
  10. Устройство источника питания, понижающего преобразователя сетевого напряжения
  11. Диагностика
  12. Неисправен предохранитель
  13. Предохранитель в целости, но выходного напряжения нет
  14. Краткое руководство по диагностике и ремонту импульсных блоков питания своими руками
  15. Основные неисправности
  16. Измерительные приборы и инструмент
  17. Поиск неисправностей
  18. Ремонт стандартных устройств
  19. Ремонт БП телевизора
  20. Ремонт БП компьютера
  21. по теме
  22. Ремонт импульсных блоков питания (ремонтные модули)

Ремонт импульсных блоков питания своими руками

Ремонт импульсного блока питания

Часто причины отказов импульсных источником напряжения кроется в некачественном сетевом напряжении. Понижение и повышение напряжения сети, скачки напряжения, отключение сети, негативно сказываются на надежности электронных компонентов схем питания.

Импульсный блок питания

Особенно болезненно переносят такие скачки и отключения сети – это силовые диоды, мощные транзисторы, ШИМ контроллеры, конденсаторы. Хорошо, когда у вас преобразователь напряжения выполнен без заливки компаундом. Ремонт таких импульсных блоков питания можно сделать своими руками.

Все чаще появляются источники напряжения, залитые компаундом. Их не берут на ремонт даже в специализированных мастерских. Для них только один вариант ремонта – это замена новым. Неправильная эксплуатация этих источников, подключение более мощных нагрузок, также могут быть причиной их выхода из строя.

Не нужно эти преобразователи сразу отдавать в ремонт, причины их отказа могут быть довольно простыми, и вы с легкостью с ними справитесь. Для более сложных неисправностей нужны некоторые познания в электронике. Опыт в ремонте приходит со временем, чем вы больше будете им заниматься, тем больше обретете знаний.

Диагностика неисправностей импульсных блоков питания

Самое главное в ремонте – это найти неисправность, а устранить ее дело техники. Схемотехнику импульсных источников питания можно разделить на входную и выходную части. К входной части относится высоковольтная схема, а к выходной низковольтная.

Простой импульсный блок питания

В высоковольтной ее части платы все элементы работают под высоким напряжением, поэтому они чаще выходят из строя, чем элементы низковольтной части. Высоковольтная схема имеет сетевой фильтр, диодные мосты для выпрямления переменного напряжения сети, ключи на транзисторах и импульсный трансформатор.

Используются ещё и небольшие развязывающие трансформаторы, которые управляются ШИМ контроллерами и подают импульсы на затворы полевых транзисторов. Таким образом, происходит гальваническая развязка сетевых и вторичных напряжений. Для такой развязки часто в современных схемах используются оптроны.

Схема импульсного блока питания на транзисторах

Выходные напряжения также имеют гальваническую развязку с сетью через силовой трансформатор.  В простых схемах преобразования вместо ШИМ контроллеров используют автогенераторы на транзисторах. Эти дешевые источники напряжения применяются для питания галогенных ламп, светодиодных ламп и т. д.

Особенностью таких схем является простота и минимум элементов. Однако простые и дешевые источники напряжения без нагрузки не запускается, выходное напряжение нестабильно и имеют повышенные пульсации. Хотя на освещение галогенных ламп эти параметры влияния не оказывают.

Диодный мост импульсного блока питания АТХ

Ремонт такого устройства очень прост из-за небольшого количества элементов. Наиболее часто возникают неисправности в высоковольтной части схемы, когда пробивается один или несколько диодов, вспучиваются электролитические конденсаторы, отказывают силовые транзисторы. Также выходят из строя диоды низковольтной схемы, перегорают дросселя выходного фильтра и предохранитель.

Неисправность этих элементов можно обнаружить мультиметром. Другие же неисправности импульсных блоков требуют применения осциллографа, цифрового мультиметра. В этом случае лучше отдать блок на ремонт в мастерскую. Предохранитель можно легко прозвонить мультиметром на наличие напряжения после предохранителя.

Предохранитель импульсного блока питания

Если перегорел предохранитель нужно внимательно визуально проверить всю схему платы, дорожки, нарушение паек, потемнение элементов схемы и участков дорожек, вспучивание конденсаторов. Если диоды плохо прозваниваются мультиметром на плате, их выпаивают, и проверяет каждый в отдельности.

Проверяются все элементы платы, неисправный меняют и только тогда включается блок в сеть для проверки. При диагностике конденсаторы тоже выпаиваются и проверяются тестером. Сгоревший дроссель можно перемотать, определив количество витков, сечение провода. Найти необходимый дроссель в продаже будет нелегко, лучше его восстановить самому.

Ремонт блоков ИБП компьютеров и телевизоров

Для ремонта источника импульсного напряжения понадобится такие инструменты как паяльник с регулировкой температуры, набор отвёрток, кусачки, пинцет, монтажный нож, обычная лампа на 100 Вт. Из материала понадобится припой, флюс, спирт для удаления канифоли кисточкой с паек платы. Из приборов нужен будет мультиметр.

Так как импульсные блоки питания (ИБП) телевизоров и компьютеров имеют стандартные схемы, то и методика обнаружения неисправностей в них будет одинакова. Нарушение работы преобразователя напряжения телевизора можно определить по отсутствию подсветки светодиода.

Блок питания компьютера АТХ

Начинают ремонт с проверки сетевого шнура, снятия блока питания с телевизора, внимательного осмотра элементов и дорожек платы. Ищут вздутые конденсаторы, потемнение дорожек, треснутый корпус алиментов, обугливание сопротивлений, нарушение целостности паек, особенно у выводов импульсного трансформатора.

Если внешних повреждений не найдено мультиметром, проверяют предохранитель, диоды, силовые транзисторы ключей, работоспособность конденсаторов. Когда вы уверены в исправности всех элементов, а устройство не работает, нужно менять микросхему генератора импульсов.

В преобразователе телевизора основные неисправности возникают в балластных резисторах, электролитических конденсаторах низкого напряжения, диодах. Прозвонить их можно не снимая с плат (кроме диодов). После устранения неисправностей припаивают лампу 100 Вт взамен предохранителя и включают.

  1. Лампа загорается и гаснет, появляется свечение светодиода спящего режима. Светится экран телевизора. Тогда проверяют напряжение строчной развертки, если оно, выше нормы меняют конденсаторы.
  2. Лампа загорается и тухнет, а светодиод не светится, нет растра. Причина, скорее всего в генераторе импульсов. Меряют напряжение на конденсаторе, которое должно находиться в пределах 280 – 300В. Если напряжение ниже, неисправность ищут в диодах или в утечке конденсатора. При отсутствии напряжения на конденсаторе, снова проверяют все цепи высоковольтных источников питания.
  3. Лампа горит ярко при неисправности некоторых элементов. Источник напряжения проверяют заново.

С помощью лампы накаливания можно находить вероятные неисправности источника. Для ремонта источника АТХ компьютера, нужно собрать схему нагрузки как на рисунке ниже или подключить к компьютеру. Однако, если неисправность блока АТХ на устранена можно спалить материнскую плату.

Вариант нагрузки для БП компьютера

Внешнее проявление отказа блока ATX может быть, когда не включается материнская плата, вентиляторы не работают или блок пытается многократно включиться. Перед поиском неисправностей устройства нужно пылесосом и кисточкой очистить его от пыли. Также проводится визуальный осмотр элементов, дорожек платы и только после этого включается нагрузка.

Если перегорает предохранитель, тогда подключают лампу накаливания 100 Вт, как при проверке источника напряжения в телевизоре.

Когда лампа загорается, но не гаснет, неисправность ищут в конденсаторе, трансформаторе и диодах моста. При целом предохранителе неисправность могла возникнуть в ШИМ контроллере, тогда необходимо заменить устройство.

Также многократный запуск источника указывает на неисправность стабилизатора опорного напряжения.

Техника безопасности при ремонте импульсного блока питания

Высокая сторона устройства не имеет гальванической развязки с сетью, поэтому нельзя прикасаться к элементам этой части двумя руками. При касании одной рукой вы получите ощутимый удар током, но это не смертельно. Нельзя проверять элементы, находящиеся под напряжением отверткой, пинцетом.

Высоковольтная схема устройства обозначается широкой полосой, а внутренняя часть мелкими штрихами краски.

Устройство имеет высоковольтный конденсатор, который после выключения блока держит опасное напряжение до 3 минут.

Поэтому после выключения нужно ждать пока конденсаторы не разрядятся или их разрядить через резистор 3 – 5 Ком. Повысить безопасность при ремонте устройства можно с помощью трансформатора безопасности.

Схема трансформатора безопасности

Этот трансформатор имеет две обмотки на 220 В мощностью до 200 Вт (зависит от мощности ИБП). Такой трансформатор имеет гальваническую развязку с сетью. Первичная обмотка трансформатора включается в сеть, а вторичная с лампой подсоединяется к ИБП. В этом случае вы можете прикасаться к элементам высокой части устройства одной рукой, вы не получите удар током.

Оригинал: https://electricavdome.ru/remont-impulsnyx-blokov-pitaniya-svoimi-rukami.html

Методика ремонта импульсного блока питания: определяем неисправности — ищем пути решения

Ремонт импульсного блока питания

Импульсный блок питания вмонтирован в большинство бытовых приборов. Как показывает практика, именно этот узел довольно часто выходит из строя, требуя замены.

Большое напряжение, постоянно проходящее через блок питания, не лучшим образом сказывается на его элементах. И дело здесь не в ошибках производителей.

Повышая срок службы путём монтирования дополнительной защиты, можно добиться надёжности защищаемых деталей, но потерять её на только что установленных.

Кроме того, дополнительные элементы усложняют ремонт – становится трудно разобраться во всех хитросплетениях полученной схемы.

Производители решили эту проблему радикально, удешевив ИБП и сделав его монолитным, неразборным. Такие одноразовые устройства встречаются всё чаще. Но, если вам повезло – отказал разборной блок, самостоятельный ремонт вполне возможен.

Принцип работы у всех ИБП одинаков. Различия касаются только схем и типов деталей. Поэтому разобраться в поломке, имея основополагающие познания в электрике, довольно просто.

Алгоритм поиска неисправностей блока питания, связанных с предохранителем

Для ремонта понадобится вольтметр.

С его помощью измеряется напряжение на электролитическом конденсаторе. Он выделен на фото. Если напряжение 300 В – предохранитель цел и все остальные, связанные с ним элементы (сетевой фильтр, кабель питания, входные дроссели) исправны.

Бывают модели с двумя небольшими конденсаторами. В этом случае о нормальном функционировании упомянутых элементов свидетельствует постоянное напряжение 150 В на каждом из конденсаторов.

При отсутствии напряжения нужно прозвонить диоды выпрямительного моста, конденсатор, сам предохранитель и так далее. Коварство предохранителей в том, что, выйдя из строя, они внешне ничем не отличаются от рабочих образцов. Обнаружить неисправность можно только через прозвонку – сгоревший предохранитель покажет высокое сопротивление.

Обнаружив неисправный предохранитель, следует внимательно осмотреть плату, так как выходит он из строя зачастую одновременно с другими элементами. Испорченный конденсатор легко заметить невооружённым глазом – он будет разрушен или вздут.
В таком случае он не нуждается в прозванивании, а просто выпаивается.

Также выпаиваются и прозваниваются следующие элементы:

  • силовой или выпрямительный мост (выглядит как монолитный блок или может состоять из четырёх диодов);
  • конденсатор фильтра (выглядит как большой блок или несколько блоков, соединённых параллельно или последовательно), находящийся в высоковольтной части блока;
  • транзисторы, установленные на радиаторе (это полевики – силовые ключи).

Важно. Все детали выпаиваются и заменяются одновременно! Замена по очереди будет приводить каждый раз к выгоранию силовой части.

Сгоревшие элементы нужно заменить на новые. Радиорынок предлагает богатый ассортимент деталей для блоков питания. Подобрать неплохие варианты по минимальным расценкам довольно легко.

На заметку. Предохранитель s://npk196/product/produkty_dlya_neftegazovoy_otrasli/remont_perekhodov_cherez_pregrady/speyser_koltso_predokhranitelnoe_izoliruyushchee_dielektricheskoe_oporno_napravlyayushchee/ можно успешно заменить кусочком медного провода. Толщина провода в 0.11 миллиметра соответствует предохранителю на 3 Ампера.

Причины поломки:

  • перепады напряжения;
  • отсутствие защиты (место под неё есть, но сам элемент не установлен – так производители экономят).

Решение этой неисправности импульсных блоков питания:

  • установить защиту (не всегда возможно подобрать нужную деталь);
  • или использовать фильтр сетевого напряжения с хорошими защитными элементами (не перемычками!).

Что делать, если нет выходного напряжения?

Ещё одна часто встречающаяся причина неисправности блока питания никак не связана с предохранителем. Речь идёт об отсутствии выходного напряжения при полностью исправном таком элементе.

Решение проблемы:

  1. Вздутый конденсатор – требуется выпаивание и замена.
  2. Вышедший из строя дроссель – необходимо вынуть элемент и поменять обмотку. Повреждённый провод разматывается. При этом ведётся подсчёт витков. Затем на это же количество оборотов наматывается новый провод подходящего сечения. Деталь возвращается на место.
  3. Деформированные диоды моста заменяются новыми.
  4. При необходимости детали проверяются тестером (если визуально не обнаружено повреждений).

Причины поломки:

Решение:

  • не закрывать вентиляционные отверстия;
  • обеспечить оптимальный температурный режим – охлаждение и вентиляцию.

Что необходимо запомнить:

  1. Первое подключение блока производится к лампе мощностью 25 Ватт. Особо важно это после замены диодов или транзистора! Если где-то допущена ошибка или не замечена неисправность, проходящий ток не повредит всё устройство в целом.
  2. Начиная работу, не стоит забывать, что на электролитических конденсаторах длительное время сохраняется остаточный разряд. Перед выпаиванием деталей необходимо закоротить выводы конденсатора. Напрямую этого делать нельзя. Следует произвести закорачивание через сопротивление номиналом выше 0,5 В.

Если весь ИБП тщательно проверен, но всё равно не работает, можно обратиться в ремонтную мастерскую. Возможно, ваш случай относится к сложной поломке всё-таки поддающейся исправлению.
По статистике около 5% поломок требуют замены блока. К счастью, это устройство всегда доступно. В магазинах можно обнаружить богатый ассортимент в разных ценовых категориях.

Особенности ремонта импульсного блока питания DVD на видео

9 Комментариев

Оригинал: https://elektrik24.net/elektrooborudovanie/bloki-pitaniya/impulsnye/remont.html

Ремонтируем импульсный источник питания сами, своими руками. Неисправности

Ремонт импульсного блока питания

Ремонт импульсного источника питания. Отремонтировать блок питания или преобразователь напряжения самостоятельно может любой человек, владеющий базовыми радиоэлектронными навыками. Действуйте, выявите неисправность и устраните ее.

(10+)

Ремонтируем импульсный источник питания сами, своими руками.

Неисправности

:: ПоискТехника безопасности :: Помощь

Внимание! Некоторые элементы источника питания во время работы находятся под сетевым напряжением. Убедитесь, что Вы обладаете необходимой квалификацией для безопасного выполнения ремонта импульсного источника питания.

Диагностика и ремонт импульсного источника питания в большинстве случаев могут быть выполнены при наличии базовых навыков в радиоэлектронике.

Устройство источника питания, понижающего преобразователя сетевого напряжения

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет.

Возможность задать вопрос авторам

Такой источник питания состоит из высоковольтной и низковольтной частей.

В высоковольтной части сетевое напряжение выпрямляется и заряжает конденсатор фильтра. Таким образом, получается постоянное напряжение около 310 вольт. Далее это напряжение преобразуется в псевдопрямоугольные колебания частотой 10 — 100 кГц, что позволяет, используя малогабаритные импульсные трансформаторы, преобразовать в низковольтное напряжение с минимальными потерями.

В низковольтной части поступающее напряжение частотой 10 — 100 кГц выпрямляется, фильтруется и подается на нагрузку. Кроме того, имеются схемы управления и обратной связи, обеспечивающие формирование нужных сигналов и поддержание стабильности выходного напряжения.

При взгляде на плату источника питания обычно визуально легко понять, где высоковольтная часть, а где — низковольтная, так как стандарты требуют отделять эти части друг от друга на некоторое расстояние с целью обеспечения безопасности пользователя. Высоковольтная часть — та, куда идет сетевой провод. Низковольтная часть — та, откуда идут провода нагрузки.

Большинство бытовых устройств содержит импульсные блоки питания, построенные на основе двух схемотехнических решений — полумостовом и однотактном прямоходном. Смотри схему.

Диагностика

Не всякий источник питания можно отремонтировать. Сейчас производители исходят из того, что источник питания — отдельный неразборный элемент, подлежащий замене как единое целое — монолитный модуль. Такой блок питания может быть просто залитым и неразборным. Но большинство источников питания все же можно разобрать и отремонтировать.

По моему опыту, 40% неисправностей приходятся на пробой диода во входном сетевом мосту или конденсатора фильтра, 30% — на пробой силового ключа — транзистора или полевого транзистора в высоковольтной части, 15% — на пробой силовых выпрямительных диодов в низковольтной части, 10% — на подгорание дросселя выходного фильтра. Остальные 5% случаев не стоят того, чтобы о них задумываться. В этих случаях несем блок в мастерскую или меняем как единое целое.

Первые два случая проявляются обычно выгоранием входного предохранителя. Третий и четвертый проявляются в отсутствии выходного напряжения при наличии входного напряжения и исправности предохранителя.

Открываем преобразователь. Проверяем предохранитель. Делаем вывод.

Неисправен предохранитель

Если предохранитель неисправен, то, скорее всего, выгорел входной мост, конденсатор фильтра или силовой ключ. Осматриваем плату блока. Неисправность высоковольтного конденсатора фильтра обычно легко заметить визуально. При пробое он разрушается или вздувается.

Также его можно выпаять и проверить тестером.

Выпаять и проверить надо сразу и входной силовой мост (он может быть как монолитным, так и состоять из отдельно стоящих диодов), и конденсатор фильтра (такой большой электролитический конденсатор в высоковольтной части, а может быть, блок конденсаторов, соединенных параллельно или последовательно), и силовые ключи / один силовой ключ для однотактного варианта (это транзисторы или полевики, установленные на радиаторе). Все, что сгорело — меняем. Если проверять и менять по одной детали, то при каждой новой проверке может снова и снова выгорать вся силовая часть.

Детали на замену сейчас купить легко. Потратьте время, найдите продавца с минимальной ценой. Цены могут отличаться в три раза.

Заменяем предохранитель, аккуратно включаем. Должно заработать. Если не заработало, несем в мастерскую или просто покупаем новый блок.

Почему выгорают элементы высоковольтной части? Из-за скачков сетевого напряжения. В источниках питания должна быть предусмотрена схема защиты от таких скачков. Производители ее закладывают, иначе им не пройти сертификации, так что на плате есть под нее место и отверстия.

Но в целях экономии ее не ставят. Наличие на плате в высоковольтной части места с незаполненными отверстиями и перемычкой поверх них говорит нам об этой проблеме. Чтобы избежать новых проблем, можно подобрать нужные элементы защиты и установить их, но это довольно сложно.

Проще оставить все как есть, а устройство питать через хороший фильтр сетевого напряжения. Вообще, лучше все радиоэлектронные устройства дома питать через такие фильтры. Только фильтр должен быть действительно хорошим, в нем должны стоять защитные элементы, а не перемычки.

Предохранитель в целости, но выходного напряжения нет

Скорее всего, пробит выпрямительный диод, или сгорел дроссель фильтра в выходной, низковольтной части схемы. Могут быть еще пробиты электролитические конденсаторы. Пробой конденсаторов хорошо виден при визуальном осмотре по вздутию или деформации, сгоревший дроссель Вы тоже не пропустите.

Диод придется выпаять и проверить тестером. Конденсаторы и диоды нужно заменить новыми. Дроссель можно перемотать. Для этого нужно его вынуть, разобрать, смотать обгоревший провод, считая витки. Намотать нужное количество витков новым проводом подходящего диаметра. Установить дроссель на место.

Такая неисправность возникает от того, что нарушается температурный режим работы блока. Например, он установлен в таком месте, где нет нормальной вентиляции, охлаждения. Устанавливайте свою аппаратуру так, чтобы она хорошо проветривалась и охлаждалась. Не закрывайте вентиляционных отверстий.

(читать дальше…

) :: (в начало статьи)

:: ПоискТехника безопасности :: Помощь

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. . [1] сообщений.

Добрый день! В драйвере от светодиодного прожектора на вход трансф-ора поступает 330в. На выходе — ничего. Выпаивал и проверял полевик, кондёры, диоды, мост — всё в норме. Так понимаю, что дело в трансе. Проблема в том, чем его заменить из, скажем, отечественных? Какой аналог подобрать (типоразмеры не критичны — можно вынести за плату)? Читать ответ…

Еще статьи

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….

Зарядное устройство. Импульсный автомобильный зарядник. Зарядка аккуму…
Схема импульсного зарядного устройства. Расчет на разные напряжения и токи….

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Питание светодиода. Драйвер. Светодиодный фонарь, фонарик. Своими рука…
Включение светодиодов в светодиодном фонаре….

Инвертор, преобразователь, чистая синусоида, синус…
Как получить чистую синусоиду 220 вольт от автомобильного аккумулятора, чтобы за…

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Бестрансформаторные источники питания, преобразователи напряжения без …
Расчет онлайн гасящего конденсатора бестрансформаторного источника питания…

Инвертирующий импульсный преобразователь напряжения. Силовой ключ — би…
Как сконструировать инвертирующий импульсный источник питания. Как выбрать мощны…

Оригинал: https://gyrator.ru/repair-switching-power-supply

Краткое руководство по диагностике и ремонту импульсных блоков питания своими руками

Ремонт импульсного блока питания

Компьютеры, современные телевизоры и некоторые другие приборы подключаются к электрической сети через импульсный блок питания.

И нередко причина их неработоспособности кроется в поломке именно этого компонента.

В ряде случаев может потребоваться ремонт импульсных блоков питания своими руками, и если пользователь владеет хотя бы основами радиолюбительства, справится с повреждением самостоятельно.

Основные неисправности

Импульсный БП отличается от обычного трансформатора с выпрямителем, наличием инвертора — схемы, увеличивающей частоту переменного тока с 50 Гц до десятков кГц. При такой частоте значительно уменьшаются размеры рабочего узла, потому импульсный блок компактнее и легче своего предшественника.

Состоит импульсный блок из таких компонентов:

  1. выпрямитель (диодный мост) с конденсатором для сглаживания пульсаций. Преобразует сетевой переменный ток в однонаправленный. Почти в половине случаев причина поломки кроется здесь — пробит диод либо раздулся конденсатор;
  2. инвертор. Состоит из быстро переключающихся ключевых транзисторов и управляющей ими микросхемы. Здесь выпрямленный постоянный ток снова превращается в переменный, но уже с частотой порядка 80 кГц. Ключевые транзисторы — слабое место. Примерно третья часть поломок обусловлена перегоранием одного из них;
  3. импульсный трансформатор. Преобразует высокое сетевое напряжение в низкое, необходимое для работы прибора;
  4. выпрямитель со сглаживающим фильтром. Также представляет собой диодный мост, но используются особые быстро открывающиеся диоды (из-за высокой частоты тока на входе). Преобразует высокочастотный переменный ток в постоянный и подает его на прибор. Работает при низком напряжении, потому выходит из строя значительно реже — примерно в 15% случаев.

Пульсации сглаживаются выходным фильтром, состоящим из дросселя и конденсатора. В редких случаях в катушке происходит межвитковое замыкание либо он перегорает.

Ремонтопригодны только БП дискретной сборки — у них каждую радиодеталь можно выпаять и проверить на работоспособность. В противоположность им существуют монолитные БП со схемой, залитой компаундом. Такие устройства не ремонтируют даже в мастерских, они подлежат замене.

Измерительные приборы и инструмент

В процессе ремонта понадобятся:

  • паяльник: предпочтительна модель с регулировкой мощности;
  • мультиметр;
  • осциллограф: существенно расширяет возможности мастера в поиске причин неисправности;
  • оловоотсос: инструмент, посредством которого удаляют расплав припоя;
  • отвертки;
  • кусачки;
  • пинцет;
  • лампа накаливания мощностью 100 – 150 Вт.

Применяются материалы:

  • припой;
  • флюс;
  • спирт или очищенный бензин для обезжиривания контактов.

Поиск неисправностей

Первым делом прозванивается сетевой шнур. И только потом, если он в порядке, разбирают электрический адаптер. Диагностику начинают с осмотра платы. Вышедшие из строя радиодетали зачастую распознаются по внешнему виду. Конденсаторы — вздуты либо вскрыты в верхней части, возможно вытекание жидкости из корпуса. Перегоревшие резисторы и диоды могут почернеть.

Также осматривают места пайки, особенно контакты первичной катушки импульсного трансформатора. Если визуально повреждение не обнаруживается, включают блок в сеть и последовательно проверяют наличие напряжения в разных частях схемы, двигаясь от предохранителя к низковольтному выпрямителю.

Сторона первого определяется по подходящему к ней сетевому шнуру, тогда как от второго идут соединительные провода к аппаратуре.

Токоведущие части включенного в сеть блока находятся под высоким напряжением. Работы ведут с предельной осторожностью, соблюдая правила техники безопасности. Если, например, после предохранителя напряжение обнаруживается, а после входного выпрямителя — нет, значит последний неисправен. Его диоды выпаивают и прозванивают мультиметром.

Найдя дефектный, не ограничиваются его заменой, а сначала проверяют все остальные. Если какой-то из них также поврежден, и его оставить без замены, то новая радиодеталь при включении БП может сгореть. Конденсатор удобно проверять при помощи специальной функции мультиметра (имеется не у всех). При ее отсутствии применяют другие способы.

Например, включают прибор в режиме измерения сопротивления, касаются щупами выводов конденсатора и засекают время до полной зарядки (показания на экране вырастут до «бесконечности»).

Затем сравнивают результат с аналогичным показателем зарядки заведомо исправного такого же конденсатора. Если в высоковольтной части БП напряжение имеется, но на выходе его нет — причину неисправности ищут в низковольтном выпрямителе или его LC-фильтре.

Конденсаторы и диоды проверяют по описанной схеме, а дроссель LC-фильтра прозванивают.

В некоторых мультиметрах имеется и функция определения параметров транзистора.

Ремонт стандартных устройств

Задача по восстановлению работоспособности БП телевизора или компьютера упрощается тем, что по своей схеме эти устройства однотипны. Отличия заключаются только в параметрах — номинале радиодеталей и выходной мощности. Соответственно, к таким БП применим один и тот же алгоритм поиска неисправностей и их устранения. Далее он подробно рассматривается.

Ремонт БП телевизора

Перед ремонтом телевизионного БП полезно обзавестись его схемой. Принцип работы у этих БП тот же, что и у любого другого. Но он производит несколько выходных напряжений, отчего процесс диагностики немного усложняется.

Схема импульсного источника питания телевизора

Еще одна трудность — наличие нескольких систем защиты при отклонениях Uвых. от нормы. Из-за них, симптомы многих поломок выглядят однообразно: БП вообще не подает признаков работоспособности.

Сегодня схему БП практически любого телевизора можно найти в интернете. На поломку блока питания указывает неработоспособность светодиода, обычно работающего в режиме ожидания. Если же он горит, причину ищут в другом.

В рамках диагностики проверяют следующие элементы:

  1. предохранитель. Если за ним напряжение отсутствует, деталь меняют;
  2. балластные сопротивления. Их обрыв — возможная причина неисправности;
  3. сглаживающие конденсаторы высоковольтного и низковольтного выпрямителей. Возможен пробой;
  4. дроссель LC-фильтра низковольтного выпрямителя. Возможны обрыв и межвитковое замыкание. Если данная модель БП встречается редко, и найти аналогичный дроссель в продаже не удается, его перематывают самостоятельно из провода того же сечения. Важно соблюсти правильное количество витков;
  5. диоды выпрямителей. Чаще выходят из строя полупроводники высоковольтного преобразователя, поскольку они работают под высоким напряжением. В отличие от перечисленных выше радиодеталей, диоды для диагностики приходится выпаивать.

Проверить на работоспособность микросхему инвертора в домашних условиях нельзя. О ее неисправности судят по косвенным признакам: если нормальное состояние всех прочих элементов подтверждено, а БП все равно не работает.

Если предохранитель цел, проверяют напряжение на выходе высоковольтного выпрямителя, интересуют параметры:

  • значение;
  • амплитуда пульсаций (определяется осциллографом).

Нормальное показатели — от 280 до 320 В. При низких значениях проверяют диоды. Высокая амплитуда пульсаций свидетельствует о неисправности сглаживающего конденсатора или обрыве выпрямителя.

Если напряжение в норме, проверяют характер неисправности, возможны два варианта:

  1. БП вообще не включается;
  2. пытается включиться, но отключается системой блокировки (реагирует на заниженное или повышенное выходное напряжение).

Снова применяют осциллограф. Его вход подсоединяют к выводу ключевого транзистора инвертора, подключенного к первичной обмотке трансформатора.

Заземляют прибор на «горячую землю» БП. Если при включении телевизора кнопкой питания на осциллографе появляется серия импульсов, это свидетельствует о попытках запуска. Значит, устройство блокируется одной из защит, например, от превышения анодного напряжения на кинескопе. Это помогает сузить круг поиска неисправности.

Если БП не пытается включиться, проверяют элементы инвертора. Например, замеряют напряжение на коллекторе ключевого транзистора. Оно должно быть таким же, что и на сглаживающем конденсаторе высоковольтного выпрямителя.

Отсутствие напряжения свидетельствует об обрыве первичной обмотки импульсного трансформатора. Заменив поврежденные радиодетали, продолжают проверку БП, включив вместо предохранителя лампочку накаливания мощностью 100 – 150 Вт.

При активации кнопки питания на телевизоре, лампочка ведет себя в соответствии с неисправностью адаптера:

  1. вспыхивает и сразу гаснет, диод режима ожидания светится, на экране виден растр. Требуется проверка напряжения строчной развертки. Если оно завышено, проверяют и при необходимости меняют конденсаторы и оптронные пары;
  2. зажглась и потухла, но светодиод не горит, и решетки на экране нет. Это свидетельствует о неработоспособности инвертора. Проверяют напряжение на сглаживающем конденсаторе высоковольтного выпрямителя. При заниженном значении, как уже говорилось, требуется проверка диодов и данного конденсатора;
  3. горит особенно ярко. В этом случае БП сразу отключают от сети и еще раз проверяют работоспособность всех элементов.

Ремонт БП компьютера

Признаки неисправности компьютерного БП:

  • ПК вообще не подает свойств работоспособности;
  • включается, но сразу после этого многократно перезапускается;
  • не вращается вентилятор в БП.

Сняв с блока крышку и очистив плату щеточкой от пыли, ее подвергают осмотру. При отсутствии внешних повреждений, проверяют на целостность предохранитель. Если перегорел, вместо него включают лампу мощностью 100 Вт и нажимают пусковую кнопку компьютера. Засветившаяся лампа свидетельствует о неисправности высоковольтного выпрямителя либо его сглаживающего конденсатора.

При исправном предохранителе проверяют:

  1. транзисторы инвертора;
  2. ШИМ-контроллер.

При поломке одного из этих элементов, экономически целесообразнее купить новый БП. Причиной постоянных попыток перезапуска чаще всего является отказ стабилизатора опорного напряжения.

по теме

О диагностике и ремонте импульсного блока питания в видео:

В данной статье упомянуты лишь основные из возможных неисправностей электрических адаптеров. Полный перечень вместе с инструкцией по ремонту занял бы объем брошюры. Но в подавляющем большинстве, происходит именно одна из перечисленных поломок. Так что пользователь имеет хорошие шансы вернуть БП в работу без обращения в мастерскую.

Оригинал: https://proprovoda.ru/elektrooborudovanie/bloki-pitaniya/impulsnye/remont-svoimi-rukami-2.html

Ремонт импульсных блоков питания (ремонтные модули)

Ремонт импульсного блока питания Стоимость: $0,5

Сегодня я хочу рассказать о модулях для ремонта импульсных блоков питания ( далее — ИБП). Импульсные блоки питания достаточно сложные изделия и они нередко выходят из строя (особенно изделия нонейм невысокого качества). Стоит ли их ремонтировать? Не всегда.

Часто, если блок питания не очень качественный и имеет стандартное напряжение,  гораздо проще, быстрее и дешевле просто купить новый готовый блок питания или высококачественную  плату с разборки (китайцы часто недорого продают платы брендовые блоков питания с разборки или после восстановления).  

Давно не писал. Проект kupislonica некоммерческий (по этой причине меркантильные авторы сбежали на другие ресурсы, писать хвалебные обзоры на товары бесплатно предоставляемые магазинами, что, вероятно, к лучшему).

Теперь это полностью мой блог (ну может будут ещё 1-2 автора). Так а как работы за которую платят (и неплохо) у меня хватает и она идет вне очереди, статьи долго не писались.

Но, наконец, я решил возобновить это неблагодарное дело, тем более что информации для написания статей накопилось масса.  

Бывают случаи, когда блок питания просто поменять не так уж просто или вообще невозможно. Например, если он имеет несколько нестандартных напряжений на выходе, необычные размеры или интегрирован в основную плату дорогого и/или уникального изделия. В таком случае альтернативы ремонту нет.

А отремонтировать ИБП иногда сложно и недешево. При проблеме в «горячей» части обычно пробивает силовой транзистор, который тянет за собой низкоомный токовый резистор, микросхему ШИМ, диодный мост, предохранитель а иногда и синфазный дроссель.

В совокупности, стоимость этих деталей уже велика, и это не считая  времени, затраченного на ремонт, а время это один из самых дорогих ресурсов. Много времени часто уходит на то, чтобы распознать элементы, найти и купить их или их аналоги.

Иногда микросхемы ШИМ не имеют маркировки или она затерта и приходится искать соответствие по выводам, подбирать варианты и изучать даташиты. Иногда специфические микросхемы или мосфеты бывает сложно приобрести или доставка очень долгая.

 При заказе можно нарваться на перемаркировку и, прождав пару месяцев, сжечь их при первом включении или первой серьезной нагрузке.

  И самая худшая на мой взгляд ситуация: блок питания уже кто-то пытался ремонтировать, «перепахал» половину платы, поднял и повредил часть дорожек, заменил некоторые детали (и не факт что на аналогичные а не на те, похожие, что были под рукой). При  таком варианте время, которое придется затратить на то чтобы восстановить схему, найти все проблемы, заказать и приобрести детали, может превысить все разумные пределы и сделать ремонт нерентабельным, даже если клиент готов дорого платить. Вот тогда-то и помогают ремонтные модули. 

Они предназначены для того чтобы быть встроенными в любой ИБП после выпрямителя, подключиться к существующему силовому трансформатору и обеспечить работу блока питания в штатном режиме, не касаясь «холодной» части схемы, тем самым сохранив все напряжения и настройки ремонтируемого блока питания. Стоимость таких ремонтных модулей невелика (часто ниже чем стоимость деталей, которые нужно заменить при ремонте ИБП а время ремонта гарантированно сокращается до десятков минут. 

Справка: ремонтные модули появились уже довольно давно и предназначались для ремонта блоков питания телевизоров. Они были построены на контроллерах Gakun и активно обсуждались на ремонтных форумах.

 Гакун стало именем нарицательным, как в свое время Ксерокс, джакузи, унитаз, бендикс и т.п.

Модули GAKUN стоили немало, от десяти долларов и выше, но при ремонте телевизора ценой от нескольких сотен до тысяч долларов такая стоимость была оправданной, модули окупались.  

К тому времени я уже не занимался ремонтом телевизоров, а при ремонте сетевого оборудования или другой недорогой техники высокая стоимость ремонтных модулей сводила смысл ремонта к нулю и GAKUN были для меня не интересны. Проще уж было вкорячить какой-нибудь ТОР или TNY.

Но мне хотелось более изящных решений при ремонтах, я даже сам начал разрабатывать ремонтный модуль на микросхеме KA5M63035R (десяток их у меня завалялся, вот и хотелось пустить их в дело), разводить печатную плату и т.п. Но до серии дело не дошло. Китайцы наладили массовое производство нескольких видов ремонтных модулей.

И пусть они сделаны неидеально, их цена в несколько раз ниже, чем себестоимость при собственном изготовлении и это решающий фактор. 

Ремонтные модули бывают разные по мощности и по схеме включения.

 Есть модули практически вообще не использующие схему ремонтируемого блока и требующие для своего подключения всего 5 точек: плюс и минус высоковольтного конденсатора, drain мосфета долженен быть удален), плюс и минус выходного напряжения.

 На плате такого модуля есть сам ШИМ контроллер, мощный MOSFET, миниатюрный трансформатор питания с выпрямителем, схема стабилизации с оптопарой и подстроечный резистор чтобы выставить напряжение стабилизации. 

Мощность блоков питания, которые можно починить с помощью таких модулей ограничивается только мосфетом на модуле (можно заменить на нужный). Стоят такие модули от 2 долларов и выше (изначально можно выбрать с мосфетом нужной мощности), у них есть свои недостатки но о них таких ремонтных модулях я напишу отдельный обзор, они того стоят.

  

Самые простые и дешёвые (я брал от 50 центов) ремонтные модули состоят из миниатюрной платки, контроллера со встроенным силовым транзистором и пары деталей. И про них я и хочу сегодня рассказать.

 

Данные ремонтные модули сделаны на микросхеме FSDM0465 (или FSDM0565) и используют обмотку самопитания штатного трансформатора ремонтируемого блока питания и его оптопару,  предполагая тем самым что схема контроля напряжения ремонтируемого блока питания исправна.

  

Что обещает нам микросхема 

Features■ Internal Avalanche Rugged SenseFET■ Advanced Burst-Mode Operation Consumesunder 1W at 240VAC and 0.

5W Load■ Precision Fixed Operating Frequency: 66kHz■ Internal Startup Circuit■ Improved Pulse-by-Pulse Current Limiting■ Over-Voltage Protection (OVP)■ Overload Protection (OLP)■ Internal Thermal Shutdown Function (TSD)■ Abnormal Over-Current Protection (AOCP)■ Auto-Restart Mode■ Under-Voltage Lock Out (UVLO) with Hysteresis■ Low Operating Current: 2.5mA

■ Built-in Soft-Start

Как по мне, так очень даже неплохо. Некоторые продавцы на своих страницах обещают мощность до 180W. В даташите на FSDM0465 не так оптимистично, мощность указана до 56W. Модули на FSDM0565 то же самое, но мощность до 80W.

На это имеет смысл обратить внимание при покупке. Иногда выгоднее купить на 2-3 цента дороже но иметь полуторный запас мощности.

Приехали данные модули прямо на общей плате. Нужен тебе – отломай и используй.

Это говорит о том что врядли их кто-то тестирует перед продажей, запаяли и вперёд. О том что это не промышленное производство говорит и то, что на общей плате запаяны микросхемы с абсолютно разными маркировками, датами производства и даже разными стилями лазерной маркировки (не факт что среди десятка нормальных нет 1-2 перемаркированных и нерабочих). Но мне пока нерабочие не попадались.

Кроме микросхемы ШИМ со встроенным силовым транзистором там всего пару деталей и разноцветный шлейф.

Я не исключаю, что у разных подвальных производителей цвет проводов может отличаться, поэтому нужно перепроверять а не надеяться на описание подключения только по цвету, тем более у некоторых продавцов в описании фигурирует синий провод, который на самом деле белый. Вероятно описание взяли с чужой странички.  

Разобраться что куда подключать не так уж сложно. Но это если продавец любезно выложил у себя на странице условную схему блока питания с указанием точек подключения.

Что-то типа такого. Но это не лучший вариант инструкции. Продавцы часто не понимают что они продают и выкладывают картинки, которые воруют у конкурентов. Смотрите внимательно.

У некоторых есть описание текстом. Гуглоперевод с китайского на английский а потом с английского на русский сложен к пониманию, я по крайней мере не стал на него полагается.

Проще поискать по страницам аналогичных товаров других продавцов, особенно если товар продают дороже.

Есть вероятность что для товара за более высокую цену продавец потратил чуть больше времени на описание и может быть приложил схему подключения. 

Типа такой.

Ну вот, другое дело! Все понятно ведь?

Или такой.

 

Для владеющих английским будет полезна такая картинка:

Я же составил простую табличку:

Цвет провода Назначение
Зеленый +320V («плюс» высоковольтного конденсатора)
Желтый Сток мосфета (Drain), трансформатор 
Красный Самопитпние ШИМ
Белый с оптопары
Черный Общий провод («минус»высоковольтного конденсатора)

А вот моя примерная схема условного блока питания с цветными точками куда что подключать.

С помощью данного типа ремонтных блоков я вернул в строй несколько дорогостоящих приборов, которые казались уже неподьемными, так как в разное время прошли через нескольких ремонтников с разной степенью криворукости и на платах встроенных блоков питания питания живого места не было.

 

Но давайте уже перейдем к делу, я на практике покажу как восстановить убитый ИБП.

Ко мне попали остатки блока питания от ноутбука DELL из сервис-центра (фото до восстановления не сделал, да и что там смотреть?) с классической неисправностью: пробит силовой транзистор, низковольтный резистор в истоке, диодный мост, синфазный дроссель, предохранитель и ШИМ контроллер.

Короче, выгорело все что могло выгореть.

В сервисе выпали неисправные элементы и посчитали что ремонт такого блока питания не имеет смысла, поэтому с платы сняли конденсаторы, диод Шоттки синфазный дроссель заменили перемычками (наверно в самом начале, когда была надежда починить), микросхему (с обвесом), отвечающую за сигнал ID выпаяли и, вероятно, переставили в другой блок. Странно что высоковольтный конденсатор остался на месте и оказался исправным. В таком плачевном виде плата досталась мне. Но трансформатор был на месте, микросхема TL431 в smd исполнении и ее обвязка визуально казались нетронутыми и это вселяло надежду.  

Паяли в сервисе не аккуратно, восстанавливать блок явно не собирались, да и плата изначально была обмазана герметиком, все вместе это представляло «душераздирающее зрелище», как говорил ослик из известного детского мультика.

На том месте где должен быть ШИМ на плате оторвано несколько дорожек разной длины, не хватает много smd деталей.

Восстанавливать такой блок питания классическим способом (поиск ШИМ и замена всех деталей) конечно же не имеет смысла, себестоимость такого ремонта будет соизмерима с ценой нового блока питания (тем более что микросхемы ID уже нет).

 А вот с помощью ремонтного модуля за $0,5 получить рабочий блок питания с неплохими характеристиками можно попробовать. Изначально поставил себе цель восстановить этот ИБП из того что есть в наличии, не докупая ничего за деньги, себестоимость ремонта не должна была превысить стоимость ремонтного модуля (50 центов или 1 белорусский рубль). И это мне удалось.

Прежде всего я запаял диодный мост. Подходящего по габаритам не нашлось, пришлось взять с запасом по мощности от компьютерного блока питания, чуть подогнув выводы и расширив отверстия в плате. Ничего, больше не меньше. Запаял отсутствующие конденсаторы во вторичной цепи (потом зашунтирую их керамикой).

По напряжению взял с запасом, благо ранее раскурочил несколько плат от старых кинескопных мониторов и халявных конденсаторов стоит целая коробка. Также запаял отсутствующий сдвоенный диод Шоттки на 50 вольт 45А (тоже лежит горка после ремонтов компьютерных блоков питания). К этому диоду я вернусь чуть позже более подробно.

Тестером проверил отсутствие короткого замыкания по выходу. Предохранитель на плате был предусмотрен специфический, маленький квадратный в пластиковом корпусе. У меня в наличии таких нет. Вместо предохранителя запаял NTC термистор. Он должен ограничить пусковой ток конденсатора при включении в сеть.

Тесты буду проводить на стенде, там уже есть трансформаторная развязка с сетью, подключаемая токоограничительная лампочка и предохранители. Когда буду отправлять этот ИБП в работу, запаяю предохранитель на место одной половины синфазного дросселя (сейчас там просто перемычки).

Я знаю что синфазный дроссель в схеме не лишний, но на плате он стоял малюсенький, врядли он парой своих витков что-то серьезно фильтровал, скорее просто создавал видимость. И главное, такого типоразмера у меня в наличии нет, да и в половине китайских блоков их нет вообще.

Наличие же NTC предотвращает искрение при включении и обгорание контактов вилки и розетки, на мой взгляд это важнее. Далее выпаял и проверил оптопару. Были случаи когда из-за неисправной оптопары блоки питания работали не в режиме или вообще выходили из строя. Оптопара оказалась исправной.

Далее я вместо оптопары временно запаял красный светодиод и подключтил к выходу ИБП лабораторный блок питания, выставил ограничение тока (на всякий случай) и стал плавно поднимать напряжение. Когда оно достигло 19,4 В светодиод загорелся. Это говорит об исправности схемы стабилизации напряжения. 

Далее выпаиваю светодиод, запаиваю на место оптопару и приступаю к подключению ремонтного модуля. Больше ничего выпаивать с платы не понадобилось («все уже украдено до нас…»), детали обвязки микросхемы ШИМ остались на плате, они никак не будут участвовать в дальнейшей работе блока питания.

 

Прикинул место где будет располагаться ремонтный модуль и укоротил провода и выводы микросхемы, торчащие с обратной стороны платы ремонтного модуля. Далее запаял по цветам в соответствии с таблицей.

 

Включил через лампочку, светодиод на выходе засветился, измерение показало что на напряжение выходе 19,4 В. Выключил, потрогал элементы. Все холодное. Что ж, пришла пора немного нагрузить блок питания. В качестве нагрузки припаял к выходу автомобильную лампу на 20W.

Лампа 12-вольтовая, но за непродолжительный срок и на 19В ничего с ней не случится. Включаю, 12-вольтовая лампа ярко горит. Но через секунд 30-40 начинает мигать и еще через пару секунд гаснет окончательно. Отключаю блок от сети, трогаю детали: контроллер на ремонтном модуле горячий, явно сработала Internal Thermal Shutdown Function (TSD).

Диод Шотки на выходе ненормально раскален. Явно без КЗ здесь не обошлось.

Отпаиваю лампочку, меряю выход, так и есть, КЗ. Пробита одна половина сдвоенного диода. Но ведь диод 45 амперный а ток через него был небольшой, чуть больше ампера, он при таком токе и греться-то сильно не должен.

И вот тут-то я начинаю вспоминать, а где я взял этот диод? А не из той ли коробочки, в которую я сбрасывал сомнительные детали, снятые с компьютерных блоков питания которые пошли на разборку? Но диод был исправен, я прозвонил его мультиметром и вставлял в электронный тестер радиокомпонентов.

Все было ОК! А достаточно ли такой проверки чтобы быть полностью уверенным в исправности диода? Как насчет утечек? Как поведет он себя под нагрузкой на пульсирующих токах?  

Беру из той же коробки другой такой же сдвоенный диод с той же маркировкой (явно из той же партии), мультиметром в режиме прозвонки диодов он звонится как исправный. Выставляю мультиметр на измерение сопротивлений на предел 20КОм. Диод показывает проводимость в обе стороны, в прямом направлении 2-3 кОм, в обратном около 10-15кОм. Так быть не должно.

Если бы в контроллере не было столько всяких защит, не исключено что такая работа под нагрузкой могла бы закончиться бабахом.

Плюсик ремонтному модулю!

Беру новый, заведомо исправный диод, он в обратном направлении на этом пределе измерений никак не звонится. Теперь все становится понятно. Или диоды были подуставшие, или они из бракованной партии. Запаиваю новый диод в плату ИБП и снова включаю.

  

Все работает, небольшой нагрев под нагрузкой есть, но он в пределах нормы, тем более что впоследствии и микросхема ШИМ с силовым элементом, и диод Шотки будут стоять на радиаторах.

Тестовый прогон показал вполне стабильную работу.

Корпуса и радиаторов для данного блока питания пока нет, возможно он пойдет в качестве замены в какой-нибудь сгоревший блок питания, пока просто отложу его в сторону до лучших времен. 

Выводы: данные ремонтные модули имеют низкую цену. Они просты в установке, не требуют наладки. Имеют множество разных защит, гальванически развязаны со вторичными цепями и безопасны для оборудования. Часто они могут быть просто спасением при ремонте блоков питания какого-либо уникального оборудования.

Для себя я заказал еще пару десятков, пусть будут про запас.

 

P.S. сегодня нашел вот такой интересный фирменный блок питания, тоже от ноутбука и тоже его кто-то уже пытался ремонтировать.

Часть деталей в обвязке ШИМ отсутствует, остальное все на месте.

Это явно будет следующий кандидат на внедрение ремонтного модуля.

Вот еще несколько ссылок на такие же модули: ссылка1, ссылка2.

Более мощный модуль: ссылка.

Более мощный и более универсальный модуль с подстройкой напряжения: ссылка

Оригинал: https://www.kupislonica.ru/remontnyie-moduli-dlya-vosstanovleniya-impulsnyih-blokov-pitaniya/

Понравилась статья? Поделиться с друзьями:
Тратосфера