Простейший регулятор яркости светодиодов

Схема диммера для светодиодных ламп на 220В

Простейший регулятор яркости светодиодов

Регулировать яркость освещения в комнате, где установлена люстра с несколькими лампами накаливания, не представляет труда. Берем выключатель на несколько кнопок и при необходимости включаем либо выключаем часть ламп.

Даже если люстра рассчитана на одну лампу, ее яркость можно изменять в широких пределах увеличивая либо уменьшая подаваемое напряжение. Светодиод работает в очень узком диапазоне напряжения и при его снижении просто гаснет.

Для изменения яркости светодиодных ламп используют диммер, представляющий собой ШИМ-контроллер (контроллер с широтно-импульсной модуляцией мощности).

Принцип широтно-полюсной модуляции (ШИМ)

Изменения мощности питающего напряжения при применении шим-контроллера обеспечивается благодаря подаче на коммутирующий элемент (в случае со светодиодами – полевой транзистор, симистор либо динистор) сигналов с изменяющейся скважностью.

Скважность (S) – соотношение между длительностью импульсов и паузой между ними.

S=T/T1, где Т – период импульсов, Т1 – период положительного фронта.

В ШИМ-контроллере импульсы следуют с постоянной частотой, изменяется лишь длительность пауз.

Ниже представлена принципиальная схема ШИМ-контроллера:

Увеличение ширины импульса увеличивает время поступления тока через транзистор к нагрузке, следовательно, и пропускаемый ток.

Частота следования импульса значительно выше той, которую способен уловить глаз, обычно 100-200Гц, потому мерцания светодиодов мы не ощущаем.

Преимущество регуляторов нагрузки на основе ШИМ-контроллеров, значительно более высокий КПД сравнительно с резистивными, поскольку избыточная нагрузка гасится, а не потребляется.

Подключение диммера в схему питания светодиодной лампы

Существует два варианта подключения:

  1. Схема подключения перед драйвером питания, когда диммируется переменное напряжение;
  2. Подключение после драйвера питания, с ШИМ-регуляцией постоянного напряжения.

Промышленные варианты диммеров для светодиодных ламп

Тип управления диммером:

  • Инфракрасный;
  • Радио;
  • Стационарный.

Управляемое напряжение:

Диммер, монтируемый вместо выключателя, с пультом дистанционного управления. Обычно устанавливаются при переоборудовании обыкновенного освещения лампами накаливания на светодиодные ленты.

Диммер, устанавливаемый перед драйвером питания светодиодов на дистанционном управлении с инфракрасным управлением.

Образец с управлением через радиоканал. В отличие от инфракрасного передатчика, такой пульт способен включить освещение даже с улицы.

Выпускают образцы с механическим либо сенсорным управлением. Есть даже модели, позволяющие управлять освещением с помощью смартфона через WiFi.

Основной недостаток всех устройств – достаточно высокая цена.

Если у вас нет желания переплачивать за ненужные функции, изготовить диммер для светодиодных ламп 220в своими руками совсем не сложно.

Схема на симисторах:

В этой схеме задающий генератор построен на двух симисторах, триаке VS1 и диаке VS2. После включения схемы конденсаторы начинают заряжаться через резисторную цепочку.

Когда напряжение на конденсаторе достигает напряжения открытия симистора, через них начинает течь ток, а конденсатор разряжается.

Чем меньше сопротивление резистора, тем быстрее заряжается конденсатор, тем меньше скважнось импульсов.

Изменение сопротивления переменного резистора регулирует глубину стробирования в широком диапазоне. Такую схему можно использовать не только для светодиодов, но и для любой сетевой нагрузки.

Подключение диммера в качестве выключателя

Схема подключения к сети переменного тока:

Диммер на микросхеме N555

Микросхема N555 представляет собой аналогово-цифровой таймер. Важнейшее ее преимущество – способность работать в большом диапазоне питающего напряжения. Обыкновенные микросхемы с TTL логикой работают от 5В, а логическая единица у них – 2,4В. КМОП серии более высоковольтные.

Но схема генератора с возможностью изменения скважности получается достаточно громоздкая. Так же у микросхем со стандартной логикой повышение частоты уменьшает напряжение выходного сигнала, что не даёт возможность коммутировать мощные полевые транзисторы и подходит лишь для небольших по мощности нагрузок.

Таймер на микросхеме N555 идеально подходит для шим-контроллеров, поскольку одновременно позволяет регулировать и частоту, и скважность импульсов. Напряжение на выходе составляет около 70% напряжения питания, за счёт чего ей можно управлять даже мосфетовскими полевыми транзисторами с током до 9А. При крайне низкой стоимости используемых деталей затраты на сборку составят 40-50 рублей.

А эта схема позволит управлять нагрузкой на 220В с мощностью до 30 Вт:

Микросхему ICEA2A после небольшой доработки можно безболезненно заменить менее дефицитной N555. Затруднение может вызвать необходимость самостоятельной намотки трансформатора.

Мотать обмотки можно на обычном Ш-образном каркасе от старого перегоревшего трансформатора на 50-100Вт. Первая обмотка — 100 витков эмалированного провода диаметр 0.224мм. Вторая обмотка — 34 витка проводом 0.

75мм (площадь сечения допустимо уменьшить до 0.5мм), третья обмотка – 8 витков проводом 0.224 – 0.3мм.

Диммер на тиристорах и динисторах

Светодиодный диммер 220В с нагрузкой до 2А:

Это двухмостовая полуволновая схема состоит их двух зеркальных каскадов. Каждая полуволна напряжения проходит через свою цепочку тиристор-динистор. Глубина скважности регулируется переменным резистором и конденсатором.

При достижении определённого заряда на конденсаторе он открывает динистор, через который течёт ток на управляющий тиристор. При смене полярности полуволны процесс повторяется во второй цепочке.

Диммер для светодиодной ленты

Схема диммера для светодиодной ленты на интегральном стабилизаторе серии КРЕН.

В классической схеме подключения стабилизатора напряжения, значение стабилизации задается резистором, подключённым к управляющему входу. Добавление в схему конденсатора С2 и переменного резистора превращает стабилизатор в некое подобие компаратора.

Преимущество схемы в том, что она совмещает сразу и драйвер питания и диммер, поэтому подключение не требует дополнительных цепей. Недостаток – при большом количестве светодиодов на стабилизаторе будет значительное тепловыделение, что требует установки мощного радиатора.

Как подключить диммер к светодиодной ленте зависит от задач диммирования. Подключение перед драйвером питания светодиодов позволит регулировать только общую освещённость, а если собрать несколько диммеров для светодиода своими руками и установить их на каждый участок светодиодной ленты уже после блока питания, появится возможность регулировать зональное освещение.

«Диммер» с фиксированным уровнем яркости

Номинал резисторов 100-500 кОм, мощность 1-2 Вт.

Это даже не димер, поскольку ШИМ контроллера тут и близко нет. Но идеально подойдет для тех, кто взял первый раз в руки паяльник.

Оцените, пожалуйста, статью. Мы старались:) (4 , 4,00 из 5)
Загрузка…

Оригинал: https://SvetodiodInfo.ru/svoimi-rukami/dimmer-dlya-svetodiodnyx-lamp-220v-svoimi-rukami.html

Регулировка яркости светодиодов

Простейший регулятор яркости светодиодов

Светодиоды больше и больше входят в нашу повседневную жизнь. Мы меняем лампы накаливания в квартире или доме, галогенные в машине на светодиодные.

Для того чтобы регулировать яркость лампочки Эддисона обычно применяют диммер — эта такая штука с помощью которой можно ограничивать переменный ток, тем самым меняя яркость свечения на нужную вам, зачем же платить больше, да еще и чувствовать дискомфорт из-за чрезмерно яркого света? Регулятор мощности вообще может использоваться для многих потребителей (паяльник, болгарка, пылесос, дрель…) от переменного напряжения сети, построены они, как правило, на основе симистора.

Светодиоды питаются от постоянного и стабилизированного тока, так что тут применить стандартный диммер не удастся.

Если просто изменять напряжение, подаваемое на него то яркость будет изменяться очень резко, для них важен ток, но вместо регулятора тока мы сделаем нечто другое, а именно ШИМ (Широко Импульсный Модулятор), он будет на некоторое определенное время отключать источник питания от светодиода, яркость уменьшится, но мигание замечать мы не будем, так как частота такая, что глаз человека этого не заметит. Тут не используетсямикроконтроллеры, ведь их наличие может стать препятствием к сборке устройства, нужно иметь программатор, определенное программное обеспечение… Поэтому в этой простой схеме используется только простые и общедоступные радиокомпоненты.

Вот такую штуку возможно использовать для любых инерционных нагрузок, то есть тех, которые могут запасать энергию, ведь, если, к примеру, отключить DC моторчик от источника питания то вращаться он перестанет никак не моментально.

Схему, как я считаю, условно можно разделить на две части, а именно это генератор, выполненный на мега-популярном таймере NE555 (аналог — КР1006ВИ1) и мощный открывающийся/закрывающийся транзистор, с помощью которого подается питание для нагрузки (здесь 555 работает в режиме астабильного мультивибратора).

У нас используется мощный биполярный транзистор NPNструктуры (я взял TIP122), но возможно заменить его полевым (MOSFET)транзистором.

Частота импульсного генератора, период, длительность импульса при этом выставляется двумя резисторами (R3,R2) и конденсаторами (C1, C2), а изменять ее мы сможем резистором с регулировкой сопротивления.

Компоненты-схемы

Существует куча программ для расчета аналогового таймера 555, можете поэкспериментировать с номиналами компонентов, которые и влияют на частоту генератора — это все легко просчитается с помощью многих программ, таких как эта.

Номиналы можно немного менять, все будет работать и так. Импульсные диоды 4148 без проблем заменяются отечественными КД222. Конденсаторы 0,1 мкФ и 0,01 мкФ дисковые керамические.

Переменным резистором устанавливаем частоту, для хорошей и плавной регулировки его максимальное сопротивление 50 кОм.

 Все собрано на дискретных элементах, плата имеет размеры 50-25 мм.

Как работает схема?

Устройство работает как переключатель между двумя режимами: ток подается на нагрузку и ток не подается на нагрузку. Переключение происходит настолько быстро что наши глаза не видят этого мигания.

Так вот, это устройство регулирует мощность путем изменения интервала между временем, когда питание подается и когда оно отключено. Думаю, вы поняли суть ШИМа.

Вот так вот это выглядит на экране осциллографа.

Первая картинка отображает слабое свечение, потому что во время периода T длинна импульса t1 занимает только 20% (это так называемый коэффициент заполнения), а все остальные 80% у нас наблюдается логический 0 (отсутствует напряжение).

 Вторая картинка показывает нам сигнал, который называется меандр, тогда у нас t1=0.5*T, то бишь скважность и Коэф. заполнения равны 50%.

В третьем случае мы имеем D=90%. Светодиод светит почти на полную яркость.

Представим что T=1 секунде, тогда в первом случае

  1. в течении 0,2с будет идти ток на светодиод, а 0,8с нет
  2. 0,5с подается ток 0,5с нет
  3. 0,9с есть ток, 0,1 нету

Кстати, сделав три платки ШИМ регуляторов по схеме и подключив их к одной RGB ленте появляется возможность выставлять нужную гамму свечения. Каждая из плат управляет своими светодиодами (красными, зелеными и синими) и смешивая их в определенной последовательности вы добиваетесь нужного свечения.

Фото

Какие же потери энергии у этого устройства?

Во-первых, это жалкие несколько миллиампер, которые потребляют импульсный генератор на микросхеме, а далее идет силовой транзистор, на котором рассеивается мощность равная примерно P=0.6V*Iпотребления нагрузки.

Базовым резистором можно пренебречь.

В целом потере на ШИМе минимальны ведь система регулирования по ширине импульса очень эффективна, так как в пустую тратится очень мало энергии (и, следовательно, выделяется мало тепла).

Итог

В итоге мы получили прекрасный и простой ШИМ. Им оказалось очень удобно настраивать для себя приятную силу свечения. Такое устройство всегда пригодится в быту.

Скачать плату можно тут

Оригинал: https://vip-cxema.org/index.php/home/svetodiody/267-regulirovka-yarkosti-svetodiodov

Регулятор яркости для светодиодов. Сделай сам

Простейший регулятор яркости светодиодов

24.12.2011 Ведущий Валерий Харыбин

В настоящее время существуют два метода регулировки яркости светодиодов в схемах драйверов: это аналоговая регулировка, которая заключается в изменении уровня постоянного тока светодиода, и ШИМ-регулировка, которая заключается в периодическом включении и выключении тока через светодиод на короткие промежутки времени …

Оригинал: https://www.chipdip.ru/video/id000316349

Регулятор яркости светодиодной подсветки приборов авто. Схема плавного розжига светодиодов

Простейший регулятор яркости светодиодовРегулятор яркости светодиодной подсветки приборов авто.
Схема плавного розжига светодиодов.

Плавный розжиг & Регулятор яркости светодиодов подсветки приборов авто

Многие автолюбители переделывают подсветку приборной панели своего авто с обычных ламп накаливания на светодиоды, и зачастую, особенно при использовании супер-ярких, приборка сияет как новогодняя елка и режет по глазам ярким свечением, что требует применения дополнительного устройства, с помощью которого можно регулировать уровень яркости, как говорится, на свой вкус. Вообще существуют два метода регулировки, это аналоговое регулирование, которая заключается в изменении уровня постоянного тока светодиода, и ШИМ регулирование, то есть периодическое включение и выключение тока через светодиод на регулируемые промежутки времени. При ШИМ-регулировке частота импульсов должна быть не ниже 200 Гц, иначе на глаз будет заметно мерцание светодиодов . Ниже приведена принципиальная схема простейшего блока, реализованного на микросхеме-таймере NE555, отечественным аналогом которой является КР1006ВИ1, эта микросхема и формирует широтно-импульсные сигналы управления.

Схема регулятора яркости светодиодов

Уровень яркости подсветки регулируется переменным резистором номиналом 50 кОм, то есть этим резистором изменяется скважность импульсов управления.

В качестве регулирующего элемента применен N-канальный полевой транзистор IRFZ44N, который можно заменить, например, на IRF640 или подобный.Делать перечень примененных элементов наверно нет смысла, их в схеме не так уж и много, поэтому перейдем к рассмотрению печатной платы.

Печатная плата разработана в программе Sprint Layout, вид платы данного формата выглядит следующим образом:

Regulator Yarkosti Svetodiodov Podsvetki Priborov_LAY6

Фото-вид платы ШИМ-регулятора LAY6 формата:

Фото-вид платы ШИМ-регулятора LAY6 формата

У многих возникает желание добавить к схеме регулятора эффект плавного розжига, и в этом нам поможет широко распространенная в интернете простенькая схемка:

Плавный розжиг светодиодов с управлением по плюсу_схема

На печатной плате мы разместили обе вышеприведенных схемы, и схему регулятора, и схему плавного розжига.

LAY6 формат платы выглядит так:

Regulator&rozjig_LAY

Фото-вид LAY6 формата:

Regulator&rozjig_LAY_foto

Фольгированный текстолит для платы односторонний, размер 24 х 74 мм.

Для установления желаемого времени розжига и затухания поиграйте номиналами резисторов, обозначенных на печатной плате звездочками, так же это время зависит от номинала электролитической емкости в схеме розжига, расположенной над выходным гнездом LED (С увеличением номинала конденсатора увеличится время).

Обращаем ваше внимание, что в схеме плавного розжига применен P-канальный MOSFET. Ниже показана цоколевка транзисторов:

Цоколевка транзистора КТ503

Цоколевка транзистора IRFZ44N

Цоколевка транзистора IRF9540

В дополнение к статье приводим еще один пример схемы с регулятором яркости и плавным розжигом светодиодов приборной панели авто:

Пример схемы плавного розжига с регулятором яркости

Размер архива с материалами статьи – 0,4 Mb.

Оригинал: https://www.komitart.ru/752-regulyator-yarkosti-svetodiodnoy-podsvetki-priborov-avto-shema-plavnogo-rozzhiga-svetodiodov.html

Способы управления яркостью свечения светодиодов с помощью импульсных драйверов

Простейший регулятор яркости светодиодов

Журнал РАДИОЛОЦМАН, ноябрь 2011

Rich Rosen, National Semiconductor

Введение

Экспоненциальный рост количества светодиодных источников света сопровождается столь же бурным расширением ассортимента интегральных схем, предназначенных для управления питанием светодиодов.

Импульсные драйверы светодиодов давно заменили неприемлемые для озабоченного экономией энергии мира прожорливые линейные регуляторы, став для отрасли фактическим стандартом.

Любые приложения, от ручного фонарика до информационных табло на стадионах, требуют точного управления стабилизированным током. При этом часто бывает необходимо в реальном времени изменять интенсивность излучения светодиодов.

Управление яркостью источников света, и, в частности, светодиодов, называется диммированием. В данной статье излагаются основы теории светодиодов и описываются наиболее популярные методы диммирования с помощью импульсных драйверов.

Яркость и цветовая температура светодиодов

Яркость светодиодов

Концепцию яркости видимого сета, испускаемого светодиодом, понять довольно легко.

Числовое значение воспринимаемой яркости излучения светодиода может быть легко измерено в единицах поверхностной плотности светового потока, называемых кандела (кд).

Суммарная мощность светового излучения светодиода выражается в люменах (лм). Важно понимать, также, что яркость светодиода зависит от средней величины прямого тока.

На Рисунке 1 изображен график зависимости светового потока некоторого светодиода от прямого тока. В области используемых значений прямых токов (IF) график исключительно линеен. Нелинейность начинает проявляться при увеличении IF. При выходе тока за пределы линейного участка эффективность светодиода уменьшается.

Рисунок 1. Зависимость светового потока от тока через светодиод.

При работе вне линейной области значительная часть подводимой к светодиоду мощности рассеивается в виде тепла. Это потраченное впустую тепло перегружает драйвер светодиода и усложняет тепловой расчет конструкции.

Цветовая температура светодиодов

Цветовая температура является параметром, характеризующим цвет светодиода, и указывается в справочных данных. Цветовая температура конкретного светодиода описывается диапазоном значений и смещается при изменении прямого тока, температуры перехода, а также, по мере старения прибора.

Чем ниже цветовая температура светодиода, тем ближе его свечение к красно-желтому цвету, называемому «теплым». Более высоким цветовым температурам соответствуют сине-зеленые цвета, называемые «холодными».

Нередко для цветных светодиодов вместо цветовой температуры указывается доминирующая длина волны, которая может смещаться точно также, как цветовая температура.

Способы управления яркостью свечения светодиодов

Существуют два распространенных способа управления яркостью (диммирования) светодиодов в схемах с импульсными драйверами: широтно-импульсная модуляция (ШИМ) и аналоговое регулирование. Оба способа сводятся, в конечном счете, к поддержанию определенного уровня среднего тока через светодиод, или цепочку светодиодов. Ниже мы обсудим различия этих способов, оценим их преимущества и недостатки.

На Рисунке 2 изображена схема импульсного драйвера светодиода в конфигурации понижающего преобразователя напряжения. Напряжение VIN в такой схеме всегда должно превышать сумму напряжений на светодиоде и резисторе RSNS.

Ток дросселя целиком протекает через светодиод и резистор RSNS, и регулируется напряжением, подаваемым с резистора на вывод CS.

Если напряжение на выводе CS начинает опускаться ниже установленного уровня, коэффициент заполнения импульсов тока, протекающего через L1, светодиод и RSNS увеличивается, вследствие чего увеличивается средний ток светодиода.

Рисунок 2. Топология понижающего преобразователя.

Аналоговое диммирование

Аналоговое диммирование – это поцикловое управление прямым током светодиода. Проще говоря, это поддержание тока светодиода на постоянном уровне.

Аналоговое диммирование выполняется либо регулировкой резистора датчика тока RSNS, либо изменением уровня постоянного напряжения, подаваемого на вывод DIM (или аналогичный вывод) драйвера светодиодов.

Оба примера аналогового управления показаны на Рисунке 2.

Аналоговое диммирование регулировкой RSNS

Из Рисунка 2 видно, что при фиксированном опорном напряжении на выводе CS изменение величины RSNS вызывает соответствующее изменение тока светодиода. Если бы было возможно найти потенциометр с сопротивлением менее одного Ома, способный выдержать большие токи светодиода, такой способ диммирования имел бы право на существование.

Аналоговое диммирование с помощью управления напряжением питания через вывод CS

Более сложный способ предполагает прямое поцикловое управление током светодиода с помощью вывода CS.

Для этого, в типичном случае, в петлю обратной связи включается источник напряжения, снимаемого с датчика тока светодиода и буферизованного усилителем (Рисунок 2).

Для регулировки тока светодиода можно управлять коэффициентом передачи усилителя. В эту схему обратной связи несложно ввести дополнительную функциональность, такую, например, как токовую и температурную защиту.

Недостатком аналогового диммирования является то, что цветовая температура излучаемого света может зависеть от прямого тока светодиода. В тех случаях, когда изменение цвета свечения недопустимо, диммирование светодиода регулированием прямого тока применяться не может.

Диммирование с помощью ШИМ

Диммирование с помощью ШИМ заключается в управлении моментами включения и выключения тока через светодиод, повторяемыми с достаточно высокой частотой, которая, с учетом физиологии человеческого глаза, не должна быть меньше 200 Гц. В противном случае, может проявляться эффект мерцания.

Средний ток через светодиод теперь становится пропорциональным коэффициенту заполнения импульсов и выражается формулой:

IDIM-LED = DDIM × ILED
 

где

IDIM-LED – средний ток через светодиод,
DDIM – коэффициент заполнения импульсов ШИМ,
ILED – номинальный ток светодиода, устанавливаемый выбором величины сопротивления RSNS (см. Рисунок 3).

Рисунок 3. Двухпроводное ШИМ диммирование.

Модуляция драйвера светодиодов

Многие современные драйверы светодиодов имеют специальный вход DIM, на который можно подавать ШИМ сигналы в широким диапазоне частот и амплитуд.

Вход обеспечивает простой интерфейс со схемами внешней логики, позволяя включать и выключать выход преобразователя без задержек на перезапуск драйвера, не затрагивая при этом работы остальных узлов микросхемы.

С помощью выводов разрешения выхода и вспомогательной логики можно реализовать ряд дополнительных функций.

Двухпроводное ШИМ-диммирование

Двухпроводное ШИМ-диммирование приобрело популярность в схемах внутренней подсветки автомобилей. Если напряжение на выводе VINS становится на 70% меньше, чем на VIN (Рисунок 3), работа внутреннего силового MOSFET транзистора запрещается, и ток через светодиод выключается. Недостаток метода заключается в необходимости иметь схему формирователя сигнала ШИМ в источнике питания преобразователя.

Быстрое ШИМ-диммирование с шунтирующим устройством

Запаздывание моментов включения и выключения выхода конвертора ограничивает частоту ШИМ и диапазон изменения коэффициента заполнения.

Для решения этой проблемы параллельно светодиоду, или цепочке светодиодов, можно подключить шунтирующее устройство, такое, скажем, как MOSFET транзистор, показанный на Рисунке 4а, позволяющий быстро пустить выходной ток преобразователя в обход светодиода (светодиодов).

а)
б)
Рисунок 4. Быстрое ШИМ диммирование (а), формы токов и напряжений (б).

Ток дросселя на время выключения светодиода остается непрерывным, благодаря чему нарастание и спад тока перестают затягиваться. Теперь время нарастания и спада ограничивается только характеристиками MOSFET транзистора.

На Рисунке 4а изображена схема подключения шунтирующего транзистора к светодиоду, управляемому драйвером LM3406, а на Рисунке 4б показаны осциллограммы, иллюстрирующие различие результатов, получаемых при диммировании с использованием вывода DIM (сверху), и при подключении шунтирующего транзистора (внизу).

В обоих случаях выходная емкость равнялась 10 нФ. Шунтирующий MOSFET транзистор типа Si3458.

При шунтировании тока светодиодов, управляемых преобразователями со стабилизаций тока, надо учитывать возможность возникновения бросков тока при включении MOSFET транзистора.

В семействе драйверов светодиодов LM340x предусмотрено управление временем включения преобразователей, что позволяет решить проблему выбросов.

Для сохранения максимальной скорости включения/выключения емкость между выводами светодиода должна быть минимальной.

Существенным недостатком быстрого ШИМ-диммирования, по сравнению с методом модуляции выхода преобразователя, является снижение КПД. При открытом шунтирующем приборе на нем рассеивается мощность, выделяющаяся в виде тепла. Для снижения таких потерь следует выбирать MOSFET транзисторы с минимальным сопротивлением открытого канала RDS-ON.

Многорежимный диммер LM3409

National Semiconductor выпускает уникальный многорежимный драйвер светодиодов LM3409, предназначенный как для аналогового, так и ШИМ регулирования яркости.

Диммирование может осуществляться одним из четырех способов:

  1. Аналоговое регулирование прямой подачей напряжения 0 … 1.24 В на вывод IADJ.
  2. Аналоговое регулирование с помощью потенциометра, подключенного между выводом IADJ и «землей».
  3. ШИМ регулирование с помощью вывода EN.
  4. ШИМ регулирование с помощью шунтирующего MOSFET транзистора.

На Рисунке 5 показана схема включения LM3409 для управления яркостью с помощью потенциометра. Внутренний источник тока 5 мкА создает падение напряжения на сопротивлении RADJ, которое, в свою очередь, влияет на внутренний порог схемы измерения тока светодиода. С точно таким же эффектом можно управлять микросхемой, непосредственно подавая постоянное напряжение на вывод IADJ.

Рисунок 5. Аналоговое управление яркостью.

Рисунок 6 демонстрирует зависимость измеренного тока светодиода от сопротивления включенного между IADJ и «землей» потенциометра. Плато на уровне 1 А в верхней части графика определяется величиной показанного на Рисунке 4 резистора RSNS, задающего максимальный номинальный ток светодиода.

Рисунок 6. Зависимость тока светодиода от сопротивления потенциометра.

На Рисунке 7 изображена зависимость измеренного тока светодиода от постоянного напряжения, приложенного к выводу IADJ. Заметим, что максимальный ток здесь также определяется величиной RSNS.

Рисунок 7. Зависимость тока светодиода от напряжения на выводе IADJ.

Обе аналоговые технологии диммирования просты в реализации и позволяют с очень высокой линейностью регулировать яркость свечения, вплоть до уровня 10% от максимума.

Заключение

Регулировать яркость свечения светодиодов, питающихся от импульсных преобразователей, можно различными способами. Для каждого из двух основных методов, ШИМ и аналогового, характерны свои достоинства и недостатки.

Ценою использования дополнительной логики, ШИМ регулирование значительно уменьшает вариации цвета светодиода при изменении яркости.

Схемотехника аналогового диммирования проще, но неприменима там, где требуется поддержания постоянной цветовой температуры.

Оригинал: https://www.rlocman.ru/review/article.html?di=124982

Понравилась статья? Поделиться с друзьями:
Тратосфера