Мощный преобразователь для питания сабвуфера от бортовой сети 12 вольт

Преобразователи для автомобильных сабвуферов

Мощный преобразователь для питания сабвуфера от бортовой сети 12 вольт

   Купить автомобильный сабвуфер конечно можно и готовый в магазине, но хороший сабвуфер достаточно дорогое удовольствие. Поэтому очень часто радиолюбители предпочитают изготовить такое устройство своими руками. Мощный и высококачественный сабвуфер собрать не просто, это достаточно сложный комплекс, который содержит в себе несколько комплектующих блоков.

 

   Простейший сабвуфер может состоять из фильтра низкой частоты, усилителя мощности и самого сабвуфера. Понимающие люди знают, что напряжение бортовой сети автомобиля 12 вольт очень мало для мощного сабвуфера, поэтому часто приходится использовать усилители повышенной мощности с преобразователем напряжения.

 

   Ни один высококачественный автомобильный усилитель не обходится без преобразователя напряжения, поэтому его можно найти в заводских сабвуферных усилителях.

 

   Такие импульсные преобразователи делаются не самую разную мощность, начиная от нескольких десятков ватт до нескольких десятков тысяч ватт.

В стандартных автомобильных усилителях мощности используют высококачественные транзисторные схемы, которым нужно повышенное двухполярное питание от 20 до 75 вольт.

Такое напряжение используется для запитки усилителей мощности от 10 до 450-500 ватт, это уже чистые звуковые ватты, а от сети 12 вольт можно получить только 18 ватт, именно поэтому нужен преобразователь. 

   Импульсные преобразователи достаточно компактны, технология построения таких преобразователей не сложна (если речь идет о мощностях 100-600 ватт). Схематика таких преобразователей напряжения схожа со схемами обычных ПН.

Любой преобразователь состоит из трех основных частей — задающий генератор, силовая часть — ключевые транзисторы и импульсный трансформатор. С вторичной обмотки трансформатора снимается нужное напряжение, которое выпрямляется, фильтруется и только потом подается на усилитель мощности.

В следующих частях мы рассмотрим подробные конструкции преобразователей напряжения для автомобильных усилителей, обсудим отдельные части схемы, оценим достоинства и недостатки конкретных схем.

Понравилась схема — лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

Оригинал: http://amplif.ru/publ/pro_usiliteli/preobrazovateli_dlja_avtomobilnykh_sabvuferov/4-1-0-127

Мощный повышающий регулируемый преобразователь напряжения 150Вт 12-35В

Мощный преобразователь для питания сабвуфера от бортовой сети 12 вольт Подходит например для питания ноутбука в авто, для преобразования 12-24, для подзарядки автомобильного аккумулятора от БП на 12V и т.п
Преобразователь добирался с левым треком типа UAххххYP и о-очень долго, 3 месяца, чуть диспут не открыл. Продавец хорошо замотал устройство.

В комплекте были латунные стойки с гаечками и шайбочками, которые сразу прикрутил, чтобы не затерялись. Монтаж довольно качественный, плата отмыта. Радиаторы вполне приличные, хорошо закреплены и изолированы от схемы. Дроссель намотан в 3 провода — правильное решение на таких частотах и токах.

Единственное — дроссель не закреплён и висит на самих проводах. Реальная схема устройства: Наличие стабилизатора питания микросхемы порадовало — это значительно расширяет диапазон входного рабочего напряжения сверху (до 32В). Выходное напряжение естественно не может быть меньше входного.

Подстроечным многооборотным резистором можно настраивать выходное стабилизированное напряжение в диапазоне от входного до 35В Красный светодиодный индикатор горит при наличии напряжения на выходе. Собран преобразователь на базе широко распространённого ШИМ контроллера UC3843AN

pdf.datasheet.

su/texas%20instruments/uc3843an.pdf

Схема подключения — стандартная, добавлен эмиттерный повторитель на транзисторе для компенсации сигнала с токового датчика. Это позволяет повысить чувствительность токовой защиты и снизить потери напряжения на токовом датчике. Рабочая частота 120кГц Если-бы Китайцы и тут не накосячили, я-бы сильно удивился :) — При небольшой нагрузке, генерация происходит пачками, при этом слышно шипение дросселя. Также заметна задержка регулирования при изменении нагрузки. Это происходит из-за неверно выбранной цепи компенсации обратной связи (конденсатор 100нФ между 1 и 2 ногами). Значительно уменьшил ёмкость конденсатора (до 200пФ) и подпаял сверху резистор 47кОм. Шипение пропало, стабильность работы возросла. — Конденсатор для фильтрации импульсных помех на входе токовой защиты поставить забыли. Поставил конденсатор 200пФ между 3 ногой и общим проводником. — Отсутствует шунтирующая керамика параллельно электролитам. При необходимости, можно допаять SMD керамику. Защита от перегрузки имеется, защиты от КЗ нет. Никаких фильтров не предусмотрено, входной и выходной конденсаторы не очень хорошо сглаживают напряжение при мощной нагрузке. Если входное напряжение вблизи нижней границе допуска (10-12В), имеет смысл переключить питание контроллера со входной цепи на выходную, перепаяв предусмотренную на плате перемычку Осциллограмма на ключе при входном напряжении 12В При небольшой нагрузке наблюдается колебательный процесс дросселя Вот что удалось выжать в максимуме при входном напряжении 12В Вход 12В / 9A Выход 20В / 4,5А (90 Вт) При этом оба радиатора прилично разогрелись, но перегрева не было Осциллограммы на ключе и выходе. Как видно, пульсации очень велики из за небольших емкостей и отсутствия шунтирующей керамики Если входной ток достигает 10А, преобразователь начинает противно свистеть (срабатывает токовая защита) и выходное напряжение снижается На самом деле, максимальная мощность преобразователя сильно зависит от входного напряжения. Производитель заявляет 150Вт, максимальный входной ток 10А, максимальный выходной ток 6А. Если преобразовывать 24В в 30В, то конечно он выдаст заявленные 150Вт и даже немного больше, только вряд-ли это кому-то нужно. При входном напряжении 12В, можно рассчитывать только на 90Вт

Выводы делайте сами :)

Планирую купить +102 Добавить в избранное Обзор понравился +68 +149

Оригинал: https://mysku.ru/blog/aliexpress/30344.html

Автомобильный преобразователь на TL494 для усилителя НЧ

Мощный преобразователь для питания сабвуфера от бортовой сети 12 вольт dimon-bidon 4-05-2020, 18:18 5 355 Электроника Приветствую, автомобилисты-самоделкины!Послушать музыку громко — удовольствие, а уж послушать громко в машине — вдвойне удовольствие (но только если это не мешает безопасности дорожного движения и другим автомобилистам!).

Штатная бортовая сеть автомобиля имеет напряжение около 12-14В, этого достаточно для подключения скромных по мощности усилителей, но слишком мало для мощных. Кроме того, для их подключения часто требуется двухполярное напряжение, например, популярные TDA7293, TDA7294 требуют двухполярного 25-30В, то есть относительно земли одно плечо питания в плюс, и одно в минус, общий размах 50-60В.

Для того, чтобы питать такие микросхемы от бортовой сети автомобиля нужны специальные преобразователи, которые из 12В могут сделать требующиеся двухполярные 25-30В. Одна из таких схем представлена ниже. Хочу обратить внимание, что она является полностью универсальной, может быть пересчитана на другие напряжения и использоваться не только для питания усилителей.

Так как мощные усилители не только питаются довольно высоким напряжением, но и потребляют от источника приличный ток, поэтому преобразователь должен выдавать мощность как минимум 100Вт. Этого с запасом достаточно для питания одного канала усилителя на TDA7294.

Её основа — крайне распространённый ШИМ-контроллер TL494, найти его можно во многих компьютерных блоках питания и других импульсных источниках. Схема имеет вход под 12В, куда будет подавать напряжение, и выход, который имеет землю (GND) и два плеча.

Необходимо учитывать, что из-за работы генератора и системы зажигания бортовая сеть автомобиля полна помех и пульсаций, а потому на входе схемы нужно предусмотреть дроссель, сглаживающий пульсации.

На схеме цепочка С5, L1, С6 образуют CLC-фильтр, который эффективно подавляет такие пульсации, поэтому не стоит экономить на ёмкостях С5, С6, минимальное значение 2200 мкФ каждого, напряжение 16 вольт, подойдут и на 25В с запасом. Колечко L1 можно взять из того же компьютерного блока питания, а можно самостоятельно намотать 10-15 витков провода диаметром 0,85 мм на жёлтом ферритовом колечке.

Также во входной цепи обязательно должен стоять предохранитель, ведь автомобильный аккумулятор в случае короткого замыкания может выдавать огромные токи, которые в считанные минуты расплавят провода. На схеме он обозначен как F1, оптимально взять на 15А.

Принцип работы заключается в следующем — на вход поступает постоянное напряжение, TL494 формирует ШИМ-сигнал, который буквально "нарезает" входное постоянное напряжение, делая из него импульсы (с помощью мощных полевых транзисторов VT3, VT4). Затем эти высокочастотные импульсы поступают на трансформатор Tr1, его нам ещё предстоит намотать, это самая ответственная часть схемы.

От правильного выбора количества витков, диаметра провода и марки феррита будет зависеть напряжение на выходе и максимальная мощность, но об этом позже. Напряжение на вторичной обмотке больше по амплитуде, чем подаваемое на первичную, но оно всё ещё представляет собой высокочастотные импульсы. Для того, чтобы его выпрямить, служат диоды VD3-VD6.

Так как они выпрямляют высокочастотное напряжение, а не привычные 50 герц, как в розетке, то сюда подойдут далеко не всякие диоды.

Нужны мощные импульсные диоды, в идеальном случае рассчитанные на ток в 10 ампер, например, хорошо подойдут отечественные Шоттки КД213, с натяжкой FR607, идеальным вариантом будут сдвоенные сборки STPS20H100CT, они почти не греются при работе даже с мощной нагрузкой.Самые сложный этап сборки преобразователя — намотка самодельного импульсного трансформатора на ферритовом кольце.

К счастью, для расчёта таких трансформаторов созданы специальные программы, например, Lite-CalcIT, скачать её можно бесплатно в интернете. Ниже представлен скриншот программы с выбранными параметрами для нашего случая.

Программа может исходя из частоты (её нужно взять 50-70 кГц), используемой марки феррита, его размеров, а также входного напряжения рассчитать количество витков в первичной и вторичной обмотках, и максимальную мощность, которую будет развивать преобразователь. Обратите внимание, что при задании входного напряжения программа просит три значения (мин., номинальное, макс.

), в случае с использованием преобразователя в автомобильной бортовой сети, номинальным будет являться напряжение 13-14В. Очень важно точно задать это значение, ведь от напряжение на входе будет также зависеть и напряжение на выходе. После того, как программа рассчитает все необходимые параметры, можно приступать к изготовлению самого трансформатора.

Он будет намотан на ферритовом кольце размерами 40мм-25мм-11мм, марка феррита 2000МН. Если посмотреть на схему, то можно увидеть, что и первичная, и вторичная обмотки содержат отвод от середины, то есть состоят из двух половинок. Эти половинки должны быть одинаковыми, поэтому важно соблюсти в точности описанную ниже технологию изготовления трансформатора.

Сперва изолируем ферритовый сердечник, для этого можно использовать и обычную изоленту, отрезая небольшие куски и продевая их через центр кольца.После этого можно приступать к намотке первичной обмотки трансформатора. Если марка вашего феррита отличается не сильно, скорее всего программа выдаст близкое количество витков, 5 или 6.

наматывает 5 витков, при этом нужно учитывать, что 5 витков — это только половина первичной обмотки, вторая половина должна содержать такие же 5 витков (обозначение 5+5 в программе). Берём медный провод, диаметр которого рассчитала программа (либо можно просто взять 0,85 мм, как самый оптимальный по гибкости), и начинаем равномерно наматывать его на колечко.

Намотали один раз, и затем намотали ещё 5 раз, виток к витку. Получилась обмотка в 5 витков жилой из 5-ти проводов, это половина первичной обмотки. Мотать всегда необходимо строго в одну сторону, и первичную, и вторичную обмотку.Теперь наматываем ещё 5 витков в 5 жил, оголяя и скручивая выводы первой и второй части первичной обмотки отдельно.

Так, чтобы в итоге получилось 4 отвода, каждый в 5 жил. Важно наматывать аккуратно, виток к витку, равномерно распределяя витки по всему кольцу.

Доводим первичную обмотку до ума, аккуратно укладываем выводы на одну сторону, зачищаем, залуживаем, укладываем в термоусадку. После этого изолируем сами витки на кольце, в дальнейшем сверху будет наматывать вторичную обмотку.

Вторичная обмотка мотается полностью аналогичным образом, но она уже содержит две части, каждая по 16 витков (либо другое значение, в зависимости от расчётов программы в вашем конкретном случае), мотать нужно уже не в 5 жил, как в первичной, а всего в 2, что упрощает задачу. Вторичная обмотка также будет содержать четыре отвода, каждый из которых в две жилы.

На фото выше вид готового импульсного трансформатора, если всё делать качественно, он будет таким же красивым. Всего у него 8 отводов, по 4 с каждой обмотки. При намотке нужно запоминать, где начало, а где концы обмотки — потому что при установке трансформатора на плату нужно соединить начало одной части первичной (во вторичной тоже, аналогично), с концов другой. Очень важно не перепутать и не подключить начало с началом, а конец с концом. Получившийся трансформатор имеет не маленькие габариты, но на плате под него предусмотрено место.Сам преобразователь собирается на печатной плате, файл которой прилагается к статье. Сборка самая стандартная — переносим рисунок, травим, сверлим, залуживаем. Следует пролудить силовые дорожки тщательно. После сборки в последнюю очередь на плату устанавливается сделанный ранее трансформатор. Когда плата собрана, флюс смыт, подаём питание и замеряем напряжение на выходе в обоих плечах. Если всё верно, оно будет соответствовать рассчитанному. При необходимости можно подстроить частоту работы преобразователя с помощью элементов C4, R3, это может понадобится в том случае, если преобразователь греется на холостом ходу, либо не отдаёт в нагрузку всей заявленной мощности. Данная схема не имеет защиты от КЗ по выходу, поэтому нужно быть аккуратным при её использовании. Удачной сборки!
plata.rar [29.4 Kb] (скачиваний: 130)
Источник (Source)
Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Подборки: преобразователь схема плата микросхема

7.

4

Идея

8.

8

Описание

7.

2

Исполнение

Итоговая оценка: 7.

8 из 10 (: 5 / История )

ВКонтакте

ОК

2

Оригинал: https://USamodelkina.ru/18173-avtomobilnyj-preobrazovatel-na-tl494-dlja-usilitelja-nch.html

Автомобильный преобразователь ±20 В для аудио усилителя

Мощный преобразователь для питания сабвуфера от бортовой сети 12 вольт

Jonathan Filippi

Напряжения бортовой сети легкового автомобиля (12 В) недостаточно, чтобы получить большую выходную мощность от аудио усилителя, поэтому для питания усилителя необходим повышающий преобразователь.

Какую же неискаженную мощность можно получить при однополярном напряжении питания 12 В?

(Uп × 0.

709 / 2)2 / Rд,

где Uп – напряжение питания, 0.709 – коэффициент пересчета на действующее значение звукового сигнала,

Rд – сопротивление динамика.

Итак, (12 × 0.709 / 2)2 / 4 = 4.5 Вт.

Не впечатляет…

Для питания мощного усилителя звуковой частоты лучше всего применять двуполярное симметричное питание, например, ±20 В.

Тогда (20 × 0.709)2 / 4 = 50 Вт.

Разница существенная, не так ли?

Предлагаемый блок питания предназначен для питания двухканального усилителя с максимальной мощностью 50 Вт на канал. Если требуется иное значение мощности, выходное напряжение может быть легко изменено.

Кликните для увеличения

Надписи на схеме

70A 4 mOhmsMOSFET

MOSFET транзистор с сопротивлением открытого канала 4 мОм
и максимальным током 70 А

Ferrite bead

Ферритовая бусина

Powder iron toroid

Кольцо из порошкового железа

5*5;10*10, turns, AWG22*3 primary,
AWG22*2 secondary

Первичная обмотка – 5+5 витков тройного провода 0.32 мм2,
вторичная обмотка – 10+10 витков двойного провода 0.

32 мм2

Shottky, 3 Arectifier

Диод Шоттки на 3 А

Как работает схема?

Это классическая схема двухтактного преобразователя, выдающего симметричное двуполярное напряжение. Имейте в виду, что устройство будет потреблять довольно значительный ток (около 10 A), так что необходимо найти провода подходящего сечения и надежно их припаять, иначе потери напряжения на входе могут оказаться недопустимо большими.

Конструкция трансформатора должна быть направлена на снижение скин-эффекта. Это можно сделать, использовав несколько соединенных параллельно обмоточных проводов.

Выходное напряжение зависит от коэффициента трансформации и скважности рабочего цикла. У меня коэффициент трансформации 2, так как количество витков трансформатора 5+5 и 10+10.

За счет динамического управления контроллером ШИМ TL494, выходное напряжение поддерживается на уровне 20 В.

Повышающий коэффициент трансформатора должен быть немного выше требуемого, чтобы компенсировать потери на выпрямительных диодах, на сопротивлении обмоток, а также снижении входного напряжения из-за падения на входных проводах.

Конструкция трансформатора

Для заявленной мощности трансформатор должен быть достаточно большим. Сердечник моего трансформатора имеет длину 33.5 мм, высоту 30.0 мм и ширину 13 мм, при этом площадь поперечного сечения равна 1.25 см2. Этого достаточно для того, чтобы на частоте 50 кГц получить мощность 150 Вт.

Провода обмоток, особенно первичной должны быть довольно большого сечения, но вместо одного провода лучше использовать несколько проводов параллельно. Это снизит внутреннее сопротивление, которое увеличивается из-за скин-эффекта.

Первичная и вторичная обмотки имеют отвод от середины, это означает, что вы должны намотать 5 витков первичной обмотки, сделать отвод, и намотать еще 5 витков.

То же самое необходимо сделать и при намотке вторичной обмотки: 10 витков, отвод, и еще 10 витков.

Очень важно, чтобы сердечник трансформатора не имел воздушных зазоров, иначе возникнут большие индуктивные выбросы напряжения, превосходящие уровень рассчитанного выходного напряжения.

Поэтому, если выходное напряжение (при полном коэффициенте заполнения импульсов ШИМ) превышает величину

Vin × N2 / N1 – Vdrop

где Vin – входное напряжение, N1, N2 – количество витков первичной и вторичной обмоток,

Vdrop – прямое падение напряжения на выпрямительных диодах,

это означает, что трансформатор имеет воздушный зазор (но нужно быть слепым, чтобы не заметить его), и КПД преобразования резко снизится. Чтобы избежать этого, используйте Ш-образный сердечник без зазора или ферритовое кольцо.

Выходные диоды, конденсаторы и дроссель

На выходе трансформатора я использовал диоды Шоттки, так как они имеют низкое прямое падение напряжения малое время восстановления. Недорогие 1N5822 (прямой ток 3 A) – лучший выбор для данной схемы.

Используйте выходные конденсаторы 4700 мкФ 25 В, больше не надо, так как на высоких частотах пульсации определяются, в основном, эквивалентным последовательным сопротивлением конденсатора (ESR).

К тому же, при большом коэффициенте заполнения импульсов ШИМ на конденсаторы подается, практически, постоянное напряжение.

Дроссель, подключенный к отводу вторичной обмотки, фильтрует пульсации выходного напряжения и способствует его стабилизации при асимметрии выходных напряжений.

Силовые ключи и драйвер

Я использовал ключевые транзисторы в корпусах D2PAK максимальным напряжением 70 В, максимальным ток 80 A и сопротивлением открытого канала 0.004 Ом. Это – очень дорогие и труднодоступные приборы фирмы Fairchind semiconductor.

В принципе, в схеме смогут работать любые мощные полевые транзисторы, но чем ниже будет их сопротивление канала, тем меньше будет потерь в открытом состоянии, меньший их нагрев и, соответственно, меньше размеры радиатора, и, как следствие, более высокий КПД устройства.

На полной мощности (100 Вт) преобразователь на указанных транзисторах работает с КПД 82% с терпимым нагревом довольно небольшого радиатора, без вентилятора.

При увеличении мощности до 120 Вт перегрев радиатора увеличивается на несколько градусов и КПД снижается до 75% (сердечник трансформатора входит в насыщение).

Используйте MOSFET транзисторы с низким сопротивлением открытого канала, и проблем с перегревом радиатора не будет возникать, иначе вам даже может потребоваться вентилятор. В качестве драйвера полевых транзисторов используется микросхема TPS2811P фирмы Texas instruments, рассчитанная на пиковый ток 2 А и время переключения 200 нс.

Индуктивность линий управления затворами должна быть минимальной, чтобы снизить потери при переключении силовых ключей и влияние на них импульсных шумовых помех. Лично я считаю, что снижение индуктивности достигается с помощью витой пары (свитые проводники, идущие от драйвера к затворам и от стоков к «земле»).

При этом резисторы необходимо располагать возле затворов транзисторов, а не возле микросхемы драйвера.

Контроллер

Я применил испытанный ШИМ контроллер TL494 с рабочей частотой, регулируемой потенциометром в пределах 40–60 кГц. Для уменьшения бросков тока добавлена схема мягкого старта.

Необходимое выходное напряжение устанавливается подстроечным резистором в цепи обратной связи. К выходнам контроллера ШИМ подключены подтягивающие резисторы R3 и R4, которые в каждом цикле, поочередно, подключаются к «земле».

Импульсные выходные сигналы поступают на сдвоенный драйвер MOSFET транзисторов (TPS2811P).

Питание устройства и снижение помех

Как уже было отмечено выше, входные провода и соединительные контакты должны быть достаточно мощными для снижения потерь от падения напряжения и обеспечения высокого КПД. Не забудьте поставить на входе предохранитель на 10–15 А, поскольку ток короткого замыкания автомобильных аккумуляторов очень велик.

При подключении к аккумулятору не лишним будет установить предохранитель и непосредственно возле него. Это обезопасит Вас от любой непредвиденной ситуации (а значит и от взрыва, пожара, пожарных и полиции). Немаловажна и фильтрация входного напряжения. Используйте на входе конденсаторы емкостью не менее 20,000 мкФ на напряжение 16 В.

Полезно применить и дроссель (с необходимым максимальным током), но пока я решил его не ставить.

Заключительные соображения

Описанный блок питания имеет КПД 85% (иногда даже 90% с определенным видом нагрузки). Для проверки пульсаций выходного напряжения воспользуйтесь осциллографом, но если вы будете следовать моим указаниям, проблем с помехами не будет.

Обратная связь для стабилизации напряжения – это хорошо, но имейте в виду, что обратной связью охвачено только положительное плечо, отрицательное плечо лишь повторяет напряжение положительного.

Если нагрузка несимметрична, возможны два варианта:

  • Сопротивление нагрузки в положительном плече ниже, чем в отрицательном. Проблем не должно возникнуть, так как отрицательное напряжение повторяет напряжение в положительном, регулируемом плече, что для аудио усилителя не страшно.
  • Сопротивление нагрузки в отрицательном плече больше, чем в положительном. Тут будет снижение напряжения на отрицательной шине относительно земли (т.е. перекос), особенно если нагрузка подключена только к этому контакту.

К счастью, аудио усилители являются вполне симметричной нагрузкой, а выходной фильтр из дросселя и конденсаторов позволяет стабилизировать выходные напряжения во время несимметричных переходных процессов (на басах).

ВНИМАНИЕ!
Имейте в виду, что ЭТОТ ПРОЕКТ НЕ ДЛЯ НОВИЧКА. НИ В КОЕМ СЛУЧАЕ НЕ ИСКЛЮЧАЙТЕ ИЗ СХЕМЫ ПРЕДОХРАНИТЕЛЬ, НЕ ЗАМЕНЯЙТЕ ЕГО ТОЛСТОЙ ПЕРЕМЫЧКОЙ (ЖУЧКОМ)! ЭТО ПОМОЖЕТ ИЗБЕЖАТЬ БОЛЬШИХ ПРОБЛЕМ.

ДЛЯ ПЕРВОГО ПРОБНОГО ВКЛЮЧЕНИЯ используйте небольшой блок питания на 12 В и резисторы для имитации нагрузки и измерения выходного тока и тока потребления. Попытайтесь определить КПД. Если он выше, чем 70–75% – вы можете быть довольны своим детищем. Регулировкой частоты добейтесь компромисса между выходной мощностью и потерями при переключении, от скин-эффекта и гистерезиса.

Перечень элементов

Кол-во

Обозначение

Значение

Резисторы

2

R1, R2

10 Ом

4

R3, R4, R6, R7

1 кОм

1

R5

22 кОм

1

R8

4.

7 кОм

1

R9

100 кОм

Конденсаторы

2

C1, C2

10,000 мкФ

2

C3, C6

47 мкФ

1

C4

10 мкФ

3

C5, C7, C14

100 нФ

2

C8, C9

4700 мкФ

1

C12

1 нФ

1

C13

2.

2 мкФ

Микросхемы

1

U1

TL494

1

U2

TPS2811P

Транзисторы

2

Q1, Q2

FDB045AN

Диоды

4

D1-D4

1N5822

1

D5

1N4148

Разное

1

FU1

10 A

1

L1

10 мкГн

1

L2

Ферритовая бусина

Триммеры

1

RV1

2.

2 кОм

1

RV2

24 кОм

1

T1

Трансформатор TRAN-3P3S

Оригинал: https://www.rlocman.ru/shem/schematics.html?di=72059

Усилитель с питанием 12 Вольт схема

Мощный преобразователь для питания сабвуфера от бортовой сети 12 вольт

Заядлым автолюбителям наверняка хотелось собрать своими руками автомобильный сабвуфер. Из-за небольшого опыта часто проект с каждым разом откладывается. Чтобы собрать сабруфер, предназначенный для автомобиля, требуются серьезные знания в сфере электроники, но даже их мало, скорее всего, придется собрать для сабвуфера коробок, и без специальных приборов это дело довольно трудное.

Для питания головки сабвуфера стандартных бортовых 12 Вольт напряжения слишком мало, нужно собрать преобразователь. Именно преобразователь является наиболее трудной частью всего проекта.

Не нужно забывать и о 12-вольтовых усилительных микросхемах, той же TDA2003. Многие не обращают большого внимания на нее, но эта схема является довольно неплохим вариантом.

Мощность усилителя на выходе составляет примерно 10 Ватт, чего явно недостаточно.

Существует мостовая схема для подключения двух аналогичных микросхем, чтобы получить в результате высокую мощность усиления.

Мостовая схема запросто работает с динамическими головками на 4 Ом, что тоже очень важно. Если подключить по мостовой схеме, то она позволяет получить на выходе мощность до 24 Ватт, и это прекрасно.

С таким усилителем удается раскачать по полной головку 25ГДН и даже более мощные. Этот вариант схемы усилителя используется в сабвуферах, лично я по данной схеме сделал несколько заказов где-то 5 лет назад, и они до сих пор превосходно работают. Хочу заметить, что бассы у таких усилителей однозначно лучше на несколько порядков, чем обеспечиваемый штатными «блинами» авто.

Микросхемы уверенно действуют в классе АВ. Учитывая значительную выходную мощность усилителя, его тепловыделение довольно большое, поэтому обязательно устанавливать микросхемы на теплоотвод, без дополнительной изоляции, поскольку у них единая масса.

Плата получается размерами не больше спичечного коробка. Усилитель промышленного образца и выполняется на промышленной плате. Можно взять плату от дешевого китайского устройства.

Питается схема прямо из бортовой сети автомобиля. Несмотря на малые размеры, усилитель может обеспечить довольно приличный басс в вашей автомобиле, и его сборка дешево обходится, микросхемы стоят не более доллара, остальную элементную базу легко откопать в чердачных припасах среднего радиолюбителя.

В дальнейшем обязательно следует рассмотреть конструкцию простого низкочастотного фильтра, который входит в любой сабвуфер.

; АКА Касьян

Оригинал: https://xn----7sbgjfsnhxbk7a.xn--p1ai/usilitel-s-pitaniem-12-volt-sxema

Понравилась статья? Поделиться с друзьями:
Тратосфера