Лабораторный источник питания из блока ATX компьютера

Лабораторный блок питания из ATX БП

Лабораторный источник питания из блока ATX компьютера

Лабораторный Блок питания из PCAT/ATX

Подборка материалов взятых из открытых источников в сети Интернет,
тексты и фотоматериалы предназначены исключительно для информационного ознакомления.

·  ШИМ — контроллер SG6105 и DR-B2002

·  ШИМ контроллер LPG899

Для того чтобы включить блок ATX, соединяем вывод PS_ON (обычно подписан на плате) с землей.
До окончания всех модификаций включение БП в сеть рекомендуется проводить через лампу 220V-60W(100W), которую можно подключить вместо сетевого предохранителя или в разрыв питающего шнура, если в схеме окажется ошибка это исключит порчу силовых транзисторов БП.

Перед тем как начать что-либо переделывать, имеющийся у вас блок нужно проверить на работоспособность, и если он не работает то отремонтировать: «Ремонт Блока Питания ATX PC».

Для начала рассмотрим схему и прочитаем описание работы блока питания AT-200W:

Условно схема делится на две части: силовую и контрольную.

Силовая часть делится на входную высоковольтную и выходную низковольтную.

Контрольная часть делиться на систему регулирования и систему защиты.

Входное напряжение через предохранитель FU1 поступает на фильтр, на элементах C1, T1, C2, и С3 и С4.

далее на выпрямитель RT1VDM1C5C8R3R4. Диоды выпрямителя заряжают силовые высоковольтные конденсаторы C5, C8, которые работают преимущественно в импульсном режиме и должны пропускать большой ток (10A).

В момент запуска блока питания по диодам проходит зарядный ток.

Терморезистор RT1, который в холодном состоянии имеет большое сопротивление (десятки ом); при включении блока питания ограничивает этот ток, нагревается, и его сопротивление падает.

Выпрямленное напряжение поступает на полумостовой инвертор VT1,VT2,C7,T3. Инвертор собран по схеме с самовозбуждением, для чего здесь имеется ПОС от "средней точки" через T2 – там есть специальный отвод.

Цепи VD2, R10, C2, R11, R12, R13 в базах силовых транзисторов накапливают положительные +0.7V для открытия этих транзисторов.

Параметры этих цепей подобраны таким образом, что инвертор без внешнего управления способен вырабатывать укороченные импульсы, которые при выпрямлении дают половинные напряжения (2-3V вместо 5V, и 6-8V вместо 12V), чтобы неуправляемый блок питания не смог спалить электронные схемы компьютера. Работающий в неуправляемом режиме инвертор может запитать только контрольную часть блока питания, а схемы компьютера сигналом PowerGood выведены в состояние сброса.

Трансформированные с помощью T3 импульсы поступают на выходной выпрямитель.

В цепях +5V/+12V применены высокоамперные переключающие диоды VDM2, VDM3 с пониженным напряжением включения, например диоды Шоттки. Для улучшения характеристик у каждого выпрямителя выровнен коэффициент мощности с помощью цепочек R51, C19, R14, C13, R15, C14.

На выходе выпрямителя получаются импульсные напряжения амплитудой примерно в 2 раза выше номинальной, т.е., например, на выходе диода в цепи +12V мы можем увидеть +24V. Но впереди – сглаживающий фильтр. Поскольку частота работы инвертора составляет десятки килогерц, то сглаживающий фильтр получается простым, и очень эффективным.

Резисторы R52, R53, R39, R40 нужны только тогда, когда блок питания включается без нагрузки, они создают минимальную нагрузку.

От выхода +12V через R38 получает питание вентилятор. Необходимость в R38 вызвана тем, что вентилятор может выйти из строя и закоротить свои питающие выводы.

В контрольной части имеется отвод от выпрямителя +12V, от сглаживающего фильтра. Как уже выше указывалось, в этой точке действует удвоенное импульсное напряжение +24V. С помощью диодного выпрямителя VD17, C23 импульсное напряжение превращается в почти такое же по амплитуде, но постоянное. Цепочкой R21, C22 оно ещё и сглаживается.

В процессе запуска блока питания, инвертор создаёт на выходе блока питания половинные напряжения.

В частности, на цепи +12V с выхода сглаживающего фильтра будет 6-8V. На выходе же выпрямителя ДО фильтра – 12-14V! Вот это напряжение и питает управляющие схемы.

Вообще всё питание контрольной части можно поделить на два вида: обычное и стабилизированное. Обычное может варьироваться от +12V до +24V.

Стабилизация производится встроенным в микросхему TL494 стабилизатором, на выходе которого получается +5V.

Прежде всего, стабильное напряжение питает МС TL494. Запускается встроенный генератор, частота которого определяется цепочкой R31, C28, пилообразный сигнал которого поступает на компараторы внутри TL494.

Однако в момент пуска компараторы "заглушены" сигналом мёртвого времени, подаваемого на вывод DT. Это сделано для того, чтобы "уравновесить" все переходные процессы в схеме, имеющиеся в момент включения устройства.

Цепочка R25R30C26 постепенно заряжается и постепенно задействует всю большую и большую часть пилы для регулирования напряжения.

       Регулирование выходного напряжения основано на сравнении выходного напряжения +5V с опорным. Сравнение организовано с помощью двух делителей R34R27, R24R28 и компаратора из TL494.

Если выходное напряжение мало, то с выходов TL494 начинают поступать импульсы дополнительной раскачки инвертора. Эти импульсы подаются на транзисторные ключи R20,R32,VT4,VD8,R18,VT9,VD9. Цепочка VD11,VD1,2C21 создаёт на эмиттерах этих транзисторов напряжение порядка 1.

5V, что приводит к их более надёжному закрытию отрицательным (относительно эмиттеров) напряжением с TL494.

Транзисторные ключи образуют собой ещё один инвертор VT4VT9T2, который и раскачивает основной инвертор VT1VT2C7T3.

Система защиты на счетверённом компараторе LM339. Назначение этой схемы – предотвратить подачу рабочих напряжений, если какое-то одно из них отсутствует или находится в недопустимых пределах. Фактически схема может только вывести инвертор в неуправляемый режим. Например, нет +5V – небудет выдавать +12V/-12V, или нет -5V – не должно быть и +5V.

Задача противоречивая, ведь тогда как включить такой блок питания, когда нет ни одного рабочего напряжения? Это решается небольшой задержкой, в ходе которой допускается отсутствие какого-либо напряжения.

Контроль организован по наличию напряжений -5V, -12V, по отсутствию перенапряжения на линии +5V и по чрезмерной раскачке управляющего трансформатора T2 – явному признаку неисправности силового инвертора (он должен самовозбуждаться на половинной мощности).

Напряжение +12V не контролируется, поскольку если его не будет, не будет работать вся контрольная часть блока питания. Уровень раскачки трансформатора T2 измеряется по индуцируемому им напряжению на резисторах R17R50.

Здесь обычно ставят разные резисторы либо лепят спайку, видимо регулируют на заводе-изготовителе. Оно и понятно: трансформатор, тем более импульсный – самый трудно контролируемый элемент.

Напряжение с цепочки R17R50VD7 сглаживается фильтром R16C25 и подаётся на делитель R41R45R46.

Тут же на этот же делитель через VD15R47 подаётся +5V с выхода блока питания.

Опорное напряжение на компараторах, по цепочке R56R43, равно 1.7V. Компаратор DA2.2 будет срабатывать, если в точке R45R46 также будет 1.7V. Значит, в точке R47R45 должно быть 5.1V. Далее стоит диод VD15 с его 0.7V и окончательно получаем 5.8V – порог срабатывания от перенапряжения.

Поскольку R47 значительно меньше R41, защита от перенапряжения срабатывает всегда вне зависимости от уровня раскачки трансформатора. И с другой стороны, если нет перенапряжения, можно контролировать раскачку трансформатора. Получается как бы резистивное "И" – независимый контроль двух параметров минимальным числом элементов.

Контроль наличия напряжений -5V и -12V реализован на цепочке R36R49VD16R48 и компараторе DA2.1. В рабочем режиме диод VD16 всегда открыт и через него всегда протекает ток на линию -12V. То есть на R48 присутствует напряжение -5.7V.

С помощью делителя R36R49 это напряжение смещается вверх, но всё равно его будет недостаточно для срабатывания компаратора. Теперь представим, что -5V пропало. Это равносильно тому, что на линии -5V будет присутствовать нулевой потенциал (благодаря резистору холостого хода R53).

На входе компаратора в точке R36R49 напряжение повысится и компаратор сработает. Ну а если пропадает -12V? Тогда диод VD16 запирается, и на всём делителе устанавливается напряжение примерно +5V, соответственно компаратор опять срабатывает.

Сигнал с обоих компараторов объединяется и поступает на линию задержки, реализованную на цепочке R44C24R22VT5. Формируемая здесь задержка на срабатывание крайне важна при запуске блока питания. Однако если всё-таки срабатывание защиты произошло, происходит два события. Во-первых, система "защёлкивается" через VD14.

На делителе R36R49 навсегда заводится +5V, и вернуть в прежнее состояние схему можно будет только после выключения блока питания и выдержки его в течении нескольких секунд. Во-вторых, через VD13 положительный сигнал разряжает конденсатор C26 в цепи формирования мёртвого времени у TL494.

То есть генератор перестаёт формировать управляющие импульсы, и инвертор уводится в неуправляемый режим.

Цепь формирования сигнала PowerGood начинается с цепочки R22C25. Поскольку постоянная времени такой цепочки – примерно полсекунды, за такое время блок питания должен будет гарантированно запуститься и сообразить что все выходные напряжения в норме.

В противном случае будет производиться срыв колебаний и включение разрядного транзистора VT6. Транзистор этот включен по токовой схеме, благодаря чему удаётся избежать слишком больших токов разрядки C25.

На конденсаторе C25 формируется плавно меняющееся напряжение, непригодное для управления цифровыми схемами. Поэтому в БП имеется триггер Шмидта, реализованный на цепочке DA2.3R33R42.

Выход PowerGood привязывается к выходному напряжению +5V и в таком виде подаётся в системную плату компьютера.

УПРАВЛЯЮЩАЯ МИКРОСХЕМА

Для формирования управляющего напряжения и переключения мощных транзисторов преобразователя ИБП, используются микросхема TL494CN  аналоги, IR3M02, uА494, КА7500, МВ3759 и т.д. рис.11 (отечественный аналог МС КР1114ЕУ4).

TL594 — аналог TL494 c улучшенной точностью усилителей ошибки и компаратора

Параметры:

Минимальное напряжение питания

+7В

Максимальное напряжение питания

+40В

Максимальный потребляемый ток

10мА

Типовое значение выходного напряжения опорного источника

+5,0В

Нестабильность опорного напряжения

0,05В

Максимальная частота

внутреннего генератора пилообразного напряжения

300кГц

Максимальный ток, коммутируемый выходными транзисторами

250мА

Диапазон дифференциального входного сигнала усилителя ошибки DA3

0,3В  (Uпит2В)

Диапазон дифференциального входного сигнала усилителя ошибки DA4

0,ЗВЗВ

Минимальная ширина "мертвой зоны" в выходном сигнале,

обеспечиваемая источником DA7 0,1В

около 5%

от периода

Рабочий температурный диапазон

0..

+70С

Особенности:

·   Возможна работа в двухтактном или однотактном режиме

·   Встроенная схема подавления сдвоенных импульсов

·   Широкий диапазон регулировки

·   Выходное опорное напряжение …………………………………….

5V +-05%

Описание:

МС TL493/4/5 включает в себя усилитель ошибки, встроенный регулируемый генератор, компаратор регулировки мертвого времени, триггер управления, прецизионный ИОН на 5V и схему управления выходным каскадом.

Усилитель ошибки выдает синфазное напряжение в диапазоне от –0,3…(Vcc-2) В.

Компаратор регулировки мертвого времени имеет постоянное смещение, которое ограничивает минимальную длительность мертвого времени величиной порядка 5%.

Допускается синхронизация встроенного генератора, при помощи подключения вывода R к выходу опорного напряжения и подачи входного пилообразного напряжения на вывод С, что используется при синхронной работе нескольких схем ИВП.

Независимые выходные формирователи на транзисторах обеспечивают возможность работы выходного каскада по схеме с общим эмиттером либо по схеме эмиттерного повторителя. Выходной каскад микросхем TL493/4/5 работает в однотактном или двухтактном режиме с возможностью выбора режима с помощью специального входа.

 

Встроенная схема контролирует каждый выход и запрещает выдачу сдвоенного импульса в двухтактном режиме.

 

Генератор пилообразного напряжения DA6; частота ГПН определяется номиналами внешних компонентов R и С подключенных к 5-му и 6-му выводам.

Частота генератора определяется по формуле:

частота обычно выбирается равной примерно 60 кГц;

НАЗНАЧЕНИЕ ВЫВОДОВ УПРАВЛЯЮЩЕЙ МИКРОСХЕМЫ TL494

Вывод

Назначение

1

Неинвертирующий вход усилителя ошибки 1

2

Инвертирующий вход усилителя ошибки 1

3

Выходы усилителей ошибки 1 и 2 и неинвертирующий вход компаратора ШИМ

4

Вывод для регулировки минимальной длительности "мертвой зоны"

5

Вывод для подключения частотозадающего конденсатора

6

Вывод для подключения частотозадающего резистора

7

Вывод для подключения к "корпусу"

8

Открытый коллектор первого выходного транзистора

9

Открытый эмиттер первого выходного транзистора

10

Открытый эмиттер второго выходного транзистора

11

Открытый коллектор второго выходного транзистора

12

Вывод для подачи питающего напряжения (+Un)

13

Вывод внешней блокировки и выбора режима работы (однотактный/двухтактный)

14

Выход опорного источника Uref

15

Инвертирующий вход усилителя ошибки 2

16

Неинвертирующий вход усилителя ошибки 2

ПЕРЕЧЕНЬ НЕКОТОРЫХ ВЗАИМОЗАМЕНЯЕМЫХ ЭЛЕМЕНТОВ В БЛОКАХ ПИТАНИЯ PC

Элемент

Возможная замена

Примечание

2SC3039, 2SC3042, 2SC2625,

2SC4242, BU426A, 2SC3040,

2SC2827, 2SC3306, 2SC4622,

2SC2555, 2SC4138, MJE13007

КТ872А, КТ854А, КТ824А(*),

КТ8114А, КП946А

Мощные ключевые транзисторы

2SC945, 2N2222, 2SC1815, 1TT9013

КТ315, КТ3102

Uкэ=30В,npn

Диоды и диодные сборки:

PBL405, RS405L РO4051, 1N5408, FL406

Д245, Д246, Д247, Д248, КД206

или мост КЦ405

Сетевой диодный мост

S15SC4M, S30D40C, СТВ34М

КД2998 А,Б,В, 2Д219

Диоды Шоттки канал +5В

OS1010R, PXPR1005, R1105F, PS108R

КД226 В,Г,Д, КД105 Б,В,Г; КД221В,Г.

Диоды силового инвертора

ESAC25020, C2504, CTL22S, 2xFR302

2хКД213А,В, 2хКД2998 КДС638

кремниевые диоды канал +12В

FR153, PXPR1002, PS102R

КД208, КД226

Выпрямительные диоды 5В 12В

1N4148

КД521, КД522

Остальные диоды

TL494, IR3M02, mPC494C, МВ3759, КА7500

КР1114ЕУ4

Схема управления БП

LM339N, HA17339, ВА10339, С339С

К1401СА1

Счетверенный компаратор

7805

КР142ЕН5А

Стабилизатор напр.

+5В

7812

КР142ЕН8Б

Стабилизатор напр.

+12В

Примечание (*): Отечественные мощные ключевые транзисторы, как правило, довольно быстро выходят из строя или не работают вообще, т.к.

рассчитаны на рабочую частоту не более 18-20 кГц!

ПАРАМЕТРЫ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СИЛОВЫХ ТРАНЗИСТОРОВ.

Транзистор

Фирма

Параметры транзистора

Iк макс, А

Uкэ макс, В

h21э мин

Fгр, МГц

Iкбо макс, А

tвкл. макс.

, с

tвыкл. макс.

, с

Ррас. макс.

, Вт

2SC2555

TOSHIBA

8,0

400

15

100 H

1мк

1мк

80

2SC2625

COLLMER

10.

0

400

10

1 мк

100

2SC2827

PRESIDENT

6.

0

450

10

20

100 мк

0,5 мк

50

2SC3039

SANYO

7,0

400

15

20

10 мк

17

2SC3040

SANYO

8,0

400

15

20

10 мк

25

2SC3042

SANYO

12,0

400

15

20

10 мк

25

2SC3277

SANYO

10,0

400

8

20

2SC3306

TOSHIBA

10,0

400

10

100 мк

1 мк

1 мк

100

2SC4242

COLLMER

7,0

400

10

1 мк

60

MJE13007

SAMSUNG

8,0

400

8

4

1,5 мк

0,7 мк

80

BU426A

MOTOROLA

6,0

400

30

6

0,6 мк

0,75 мк

113

Мощный лабораторный БП из БП ATX

С регулировкой напряжения 0–20V и тока 0–10А на микросхеме TL494 (DBL494). Выпаиваем всю выпрямительную часть и всё, что соединено с ножками 1, 2 и 3 микросхемы TL494.

Отсоединяем от схемы ножки 15 и 16 – это второй усилитель ошибки, который мы используем для канала стабилизации тока.

Также нужно выпаять диод, соединяющий выходную обмотку силового трансформатора с + питания TL494 – она будет питаться только от маленького «дежурного» преобразователя (у него есть не только 5V выход, но и 12V), чтобы не зависеть от выходного напряжения БП.

Пунктиром очерчены детали, которые уже есть в БП. Выпрямительные диоды нужно соединить с 12-вольтовыми отводами вторичной обмотки силового трансформатора. Лучше поставить более мощные, например сборку 30CPQ150 (30А 150В) – тогда можно максимальный выходной ток увеличить до 20А.

Дроссель L1 делаем из кольца, оставив на нём только 5-тивольтовую обмотку, дроссель L2 из цепи 5V.

Приводим схему выходной части в соответствие с такой схемой ниже:

Вентилятор запитываем от питания TL494 (12 нога) – так, чтобы он дул внутрь корпуса.

На микросхеме ОУ LM358 (LM2904, или любой другой сдвоенный низковольтный операционник, который может работать в однополярном включении и при входных напряжениях от 0 В) собран измерительный усилитель выходного напряжения и тока, который будет давать измерительные сигналы на TL494. Резисторы R9 и R8 задают опорные напряжения.

Переменный резистор R9 регулирует выходное напряжение, R8 – выходной ток.

Токоизмерительный резистор R7 на 0.05ом должен быть мощностью 5 ватт (10А2*0.05ом).

Питание для ОУ берём с выхода «дежурных» 5В БП ATX (обычно обозначены на плате как +5VSB или 5V STANDBY, фиолетовый провод). Нагрузка подключается к +OUT и -OUT.

В качестве вольтметра и амперметра можно использовать либо стрелочные приборы, либо пару цифровых вольтметров, которые нужно подключить к выходам LM358 (7 нога – напряжение, 1 нога – ток, напряжение – 0…5 В) и оттарировать тестером.

Питать цифровые вольтметры можно с «дежурных» 5V – там 2А.
Если регулировка не нужна, то R8 просто ставим на максимум.

Стабилизироваться БП будет так: если, например, установлено 12В 1А, то если ток нагрузки меньше 1А – стабилизируется напряжение, если больше – то ток.

Измерительный резистор R7 – это два 5-тиваттных резистора (белые) по 0.1ом соединённые параллельно.

Дополнение:

Нагрузочный резистор 470ом 1 Вт ставим параллельно C5. Он нужен чтобы БП без нагрузки не оставался. Ток через него не учитывается, он до измерительного резистора R7 включён. Без него, тоже работать будет, но тогда если установить более низкое напряжение при отключенной от выхода нагрузке – долго ждать, пока C4 и C5 разрядятся до нужного напряжения.

Вариант переделки PC БП типа ATX, в регулируемый блок с напряжением 3 – 25V и ток 5А.
Первое — удаляем резистор с первой ноги микросхемы к +5V и ставим резистор от первой ноги к 12V на 1Ком.

Ставятся 2 переменных резистора для грубой и точной регулировки. Затем необходимо выпаять дроссель групповой стабилизации, а в образовавшийся разрыв цепи 12V впаять перемычку.

Также необходимо заменить фильтрующие конденсаторы в выходных цепях, на конденсаторы с более высоким напряжением. Т.

к напряжение на выходе теперь изменяющееся то кулер нужно питать от 220V (есть такие) либо запитать его от “дежурки”.

Импульсный блок питания на базе БП ПК

Оригинал: http://electro-tehnyk.narod.ru/docs/ATX.htm

Лабораторный БП из компьютерного ATX

Лабораторный источник питания из блока ATX компьютера

В наше время наверное только ленивый, не переделывал компьютерный AT или ATX блок питания в лабораторный или зарядное устройство для автомобильной АКБ. И я решил не оставаться в стороне. Для переделки взял старый ATX 350 Вт блок питания с ШИМ контроллером TL494 или его аналогом KA7500B, блоки с таким контроллером легче всего переделывать.

Первым делом необходимо убрать лишние компоненты с платы, дроссель групповой стабилизации, конденсаторы, некоторые резисторы, не нужные перемычки, цепь power ON с ней же и компаратор LM393. Стоит заметить что все схемы на TL494 похожи, иметь могут только не большие различия, поэтому для понимания как переделывать БП можно взять типовую схему.

Вообщем вот типовая схема ATX блока питания на TL494.

 Вот схема с удаленными лишними элементами.

На первой схеме я выделил участок, этот участок отвечает за защиту от перегрузок по мощности у себя я его счел нужным удалить о чем немного сожалею. Советую этот участок не удалять.

В выходной цепи вместо диодной сборки +12 В необходимо поставить диодную сборку Шоттки с максимальным импульсным обратным напряжением 100 В и током 15 А примерно такую: VS-16CTQ100PBF.

Электролитический конденсатор после дросселя должен иметь емкость 1000-2200 мкФ и напряжение минимум 25 В. Нагрузочный резистор должен иметь сопротивление 100 Ом и мощность около 2 Вт. Дроссель

После того как все лишние удалено, можно приступить к сборке схемы управления.

Схему управления взял из этой статьи: Лабораторный БП из AT. В этой статье очень подробно описывается переделка.

На операционном усилителе DA1.1 собран дифференциальный усилитель в цепи измерения напряжения. Коэффициент усиления подобран таким образом, что при изменении выходного напряжения блока питания от 0 до 20 В (с учётом падения напряжения на шунте R7), на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R2/R1=R4/R3.

На операционном усилителе DA1.2 собран усилитель в цепи измерения тока. Он усиливает величину падения напряжения на шунте R7. Коэффициент усиления подобран таким образом, что при изменении тока нагрузки блока питания от 0 до 10 А, на его выходе сигнал меняется в пределах 0…5 В. Коэффициент усиления зависит от соотношения сопротивлений резисторов R6/R5.

Сигналы с обоих усилителей (напряжения и тока) подаются на входы компараторов ошибки ШИМ-контроллера (выводы 1 и 16 DA2).

Для установки необходимых значений напряжения и тока, инвертирующие входы этих компараторов (выводы 2 и 15 DA2) подключены к регулируемым делителям опорного напряжения (переменные резисторы R8, R10).

Напряжение +5 В для этих делителей снимается с внутреннего источника опорного напряжения ШИМ-контроллера (вывод 14 DA2).

Резисторы R9, R11 ограничивают нижний порог регулировки. Конденсаторы C2, C3 устраняют возможный «шум» при повороте движка переменного резистора. Резисторы R14, R15 также установлены на случай «обрыва» движка переменного резистора.

На операционном усилителе DA1.4 собран компаратор для индикации перехода блока питания в режим стабилизации тока (LED1).

Моя схема

В своей схеме для измерения тока я использую датчик тока ACS712 на эффекте холла, валялся длительное время без дела вот и решил внедрить. Надо отметить, что измеряет  он по точнее чем кусок проволоки, ибо имеет маленькую зависимость от температуры так как измерительная часть имеет очень маленькое сопротивление. Кусок же проволоки меняет свое сопротивление с ростом тока.

Сборка

Шунт сделал из текстолита и куска проволоки из черного метала, сопротивление получилось примерно 0,001 Ом, чего вполне достаточно. Крепится к корпусу на стойки для печатных плат.

Разместил все в готовом корпусе:

Готовый корпус заводского изготовления (G768 140x190x80мм).

Чертеж передней панели:

Плата от компьютерного блока питания, легко устанавливается в этот корпус.

Сзади установлен вентилятор охлаждения, он продувает воздух через весь корпус, в верхней крышке насверлил отверстий по бокам для выхода воздуха. Обороты заданы DC-DC преобразователем, питание взято с дежурки 20V.

Плата индикации:

Вид сверху:

Вид снизу:

Плата создана в программе Dip Trace Скачать

Плата управления:

Вид сверху:

Вид снизу:

Плата создана в программе Dip Trace Скачать

Код программы для Atmega8

Код создан в среде CodeVisionAVR. Особо ничего не придумывал, использовал математику с float.

Архив с проектом, в нем же можно найти прошивку Скачать

#include
#include
#include
#include

// Voltage Reference: AREF pin
#define ADC_VREF_TYPE ((0

Оригинал: http://myelectronics55.ru/laboratorniy-bp-iz-komputernogo-atx/

Лабораторный блок питания из компьютерного atx

Лабораторный источник питания из блока ATX компьютера

Лабораторный блок питания из компьютерного atx

     С каждым годом, становится всё труднее достать хороший трансформатор для блока питания. Чтоб и напряжения были какие требуются, и ток.

Вот недавно нужно было собрать адаптер для одного девайса, так оказывается цены на обычные трансформаторы, в радиомагазинах, находятся в пределах 5-15 уе! Поэтому, когда потребовалось сделать хороший лабораторный блок питания, с регулировками напряжения и тока защиты, выбор пал на компьютерный БП ATX в качестве основы конструкции. Тем более, что его цена сейчас не намного больше цены обычного трансформатора.

     Для наших целей подойдёт абсолютно любой компьютерный БП. Хоть на 250 ватт, хоть на 500. Того тока, что он обеспечит, хватит для радиолюбительского БП с головой.

     Переделка компьютерного БП ATX минимальна, и доступна для повторения даже начинающим радиолюбителям. Главное только помнить, что импульсный компьютерный БП ATX имеет на плате много элементов, которые находятся под напряжением сети 220 В, поэтому будьте предельно аккуратны при испытаниях и настройке! Изменений коснулась в основном выходная часть БП ATX.

     Для удобства эксплуатации, этот лабораторный блок питания можно снабдить цифровой индикацией тока и напряжения. Выполнить это можно или на микроконтроллере, или на специализированной микросхеме.

     Все основные и дополнительные детали блока питания монтируются внутри корпуса БП ATX. Места там хватает и для них, и для цифрового вольтамперметра, и для всех необходимых гнёзд и регуляторов.

     Последнее преимущество так-же очень актуально, ведь корпуса часто являются большой проблемой. Лично у меня в ящике стола лежит немало девайсов, которые так и не обзавелись собственной коробкой.

 

     Корпус получившегося блока питания можно обклеить декоративной чёрной самоклеющейся плёнкой или просто покрасить. Переднюю панель со всеми надписями и обозначениями делаем в фотошопе, печатаем на фотобумаге и наклеиваем на корпус.

     Долгие испытания лабораторного блока питания показали его высокую надёжность, стабильность и отличные технические характеристики.

Рекомендую всем повторить эту конструкцию, тем более, что переделка довольно простота и в итоге получится красивый компактный БП.

Другие качественные фото блока питания можно скачать в разделе книги

     Если возникли вопросы по переделке — задавайте их на ФОРУМЕ

   Схемы блоков питания

Оригинал: https://elwo.ru/publ/skhemy_blokov_pitanija/laboratornyj_blok_pitanija_iz_kompjuternogo_atx/7-1-0-422

Переделка компьютерного блока питания на 24 вольта в регулируемый лабораторный источник своими руками

Лабораторный источник питания из блока ATX компьютера

Сегодня стоимость лабораторного блока питания составляет примерно 10 тыс. рублей. Но, оказывается, есть вариант переделки компьютерного блока питания в лабораторный.

Всего за тысячу рублей вы получаете защиту от короткого замыкания, охлаждение, защиту от перегрузки и несколько линий напряжения: 3В, 5В и 12В.

Однако мы будем модифицировать его, чтобы получить диапазон от 1,5 до 24В, который идеально подойдет для большинства электроники.

Я считаю, что этот способ переделки компьютерного блока питания на 24 вольта лучший, учитывая, что я смог воплотить его в реальность своими руками всего в 14 лет.

ПРЕДУПРЕЖДЕНИЕ: Здесь ведется работа с током, будьте осторожны и соблюдайте меры безопасности!

Вам понадобится:

  • рулетка
  • отвертка
  • Компьютерный блок питания (рекомендую 250 Вт +) и кабель для него
  • Проволочные защелки
  • Паяльник
  • Резистор на 10Ом 10Вт или больше (некоторые новые блоки питания не работают должным образом без нагрузки, поэтому резистор должен её обеспечить)

Необязательно:

  • переключатель
  • 2 светодиода любого цвета (красный и зеленый подойдут лучше всего)
  • Если вы используете светодиоды, понадобится 1 или 2 резистора на 330 Ом,
  • Термоусадка
  • Внешний корпус (можно поместить всё в оригинальный корпус, а можно взять другой).

В зависимости от того, какой метод для регулируемого блока питания из БП компьютера вы используете (подробнее об этом позже):

  • Клеммные колодки
  • Дрель
  • Регулятор напряжения LM317 или LM338K
  • Конденсаторы 100nF (керамика или тантал)
  • Конденсаторы 1uF Электролитические
  • Силовой диод 1N4001 или 1N4002
  • Резистор 120 Ом
  • Переменный резистор 5 кОм
  • Разъемы
  • Зажимы «крокодил»

Шаг 1: Сбор и подготовка блока питания

Предупреждение: ПЕРЕД ТЕМ, КАК НАЧАТЬ, УБЕДИТЕСЬ, ЧТО БЛОК ПИТАНИЯ НЕ ПОДКЛЮЧЕН

Конденсаторы могут ударить током, что довольно больно. Дайте блоку питания полежать в течение нескольких дней, чтобы он разрядился, или подключите резистор на 10 Ом к красному и черному проводу.

Если вы слышите жужжание при включении питания, это означает, что где-то происходит короткое замыкание или другая серьезная проблема. Если вы слышите жужжание (не от паяльника) во время пайки, это означает, что блок питания подключен. Помните, что если блок, который подключен к питанию, отключить кнопкой, в нем все еще останется ток.

Хорошо, давайте вынем блок питания из компьютера. Обычно он крепится на 4 винтах к задней панели корпуса. Выньте провода из отверстия, затем сгруппируйте их по цветам и отрежьте концы.

Кстати, вы только что аннулировали свою гарантию.

Шаг 2: Делаем проводку

Теперь приступим к сложной части, где нужно добавить светодиоды, переключатели и другие подобные детали. Мы имеем много проводов каждого типа, поэтому я рекомендую использовать 2-4 провода. Некоторые люди перебирают все внутри коробки, а я сделал всё снаружи. Это зависит от того, какой метод вы используете на следующем шаге.

Если вы хотите добавить индикатор ожидания или индикатор включения питания, вам понадобится светодиод (рекомендую красный, но не обязательно) и резистор на 330 Ом. Припаяйте черный провод к одному концу резистора, а короткий конец светодиода — к другому.

Резистор уменьшит напряжение, чтобы не повредить светодиод. Перед пайкой, наденьте небольшой кусок термоусадки, чтобы защитить контакты от короткого замыкания.

Припаяйте фиолетовый провод к более длинной ноге, и когда вы подадите питание (не включая блок), светодиод должен загореться.

Для включенного блока питания вы также можете установить другой светодиод (рекомендую зеленый). Некоторые говорят, что нужно использовать серый провод для питания светодиода, но тогда нужен еще один резистор на 330 Ом. Я просто подключил его к оранжевому проводу 3,3 В.

Если вы используете метод с серым проводом:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте серый провод к одному концу резистора, а другой конец резистора — к более длинной ножке светодиода. Черный провод припаяйте к короткой ножке.

При использовании оранжевого провода 3.3В:
Прежде чем припаять его, наденьте еще один кусочек термоусадки, чтобы предотвратить КЗ. Припаяйте оранжевый провод к более длинной ножке светодиода, а черный провод — к более короткой ножке.

Теперь к переключателю: если на задней стенке вашего блока питания уже есть переключатель, этот пункт вам не сильно пригодится. Подключите зеленый провод к одному контакту на переключателе, а черный — к другому. Если вы не хотите использовать переключатель, просто соедините зеленый и черный провода.

Вы также можете использовать предохранитель на 1А. Всё, что нужно сделать, это обрезать черные провода примерно в середине, и соединить их с предохранителем в держателе.

Некоторым блокам питания нужна нагрузка для правильной работы. Для обеспечения этой нагрузки припаяйте красный провод к одному концу резистора 10 Ом\10 Вт и черный провод к другому. Таким образом блок будет думать, что он что-то делает.

Если вы ничего не поняли, загляните в схему, которую я приложил. В ней показан способ подключения проводов. Об этом я расскажу в следующем шаге. Там изображен способ с серым проводом на светодиод (но вы можете использовать оранжевый, как написано выше), а также показывает проводку для высокоомного резистора.

Шаг 3: Пускаем ток!

В учебных пособиях, которые я прочитал, существует множество различных способов подключения разъемов для подключения ваших устройств к питанию. Мы начнем с самого лучшего и дойдем до худшего.

Некоторые учебные пособия расскажут вам, как собрать все детали внутри корпуса, но это опасно и приведет к чрезмерному нагреву и поломкам. Я рекомендую использовать внешний монтаж.

Добавление переменного резистора

Я лично считаю, что это лучший метод, так как он может обеспечить любое напряжение от 1,5 до 24 В. Причина того, что он на 22В, а не 12В, потому что он использует синий провод, который имеет напряжение -12 В, а не обычную землю (черный провод).

Нам понадобится:

  • Регулятор напряжения LM317 или LM338K
  • Конденсаторы 100nF (керамика или тантал)
  • Конденсаторы 1uF Электролитические
  • Силовой диод 1N4001 или 1N4002
  • Резистор 120 Ом
  • Переменный резистор 5 кОм

Сначала постройте схему с основного изображения и соедините ваши линии +12 и -12 В. Затем просверлите отверстия в блоке питания или в внешнем корпусе, чтобы установить переменный резистор. Все остальные детали должны находиться внутри.

Теперь я предлагаю добавить две клеммных колодки, чтобы вы могли подключать устройства напрямую. Также можно подключить к ним «крокодилы». Когда вы поворачиваете переменный резистор, напряжение должно находиться в диапазоне от 1,5 до 24 В.

ПРИМЕЧАНИЕ. На главном изображении есть опечатка, которую следует учесть: + 24В вместо 22В. Если у вас есть старый вольтметр, вы можете подключить его в цепь, чтобы отслеживать выходящее напряжение.

Разъемы

Теперь нужно установить разъемы для подключения оборудования.

Просверлите для них отверстия (обязательно оберните печатную плату в пластик, так как металлические осколки могут закоротить ее), а затем проверьте, подходят ли они по размеру, вставив разъемы и затянув болт. Выберите, какое напряжение должно идти на каждый разъем и сколько разъемов нужно вставить. Обозначения проводов по цветам:

  • Красный: + 5В
  • Желтый: + 12В
  • Оранжевый: + 3,3В
  • Черный: Земля
  • Белый: -5В

Выше приведено изображение с использованием метода с разъемами.

Крокодиловые зажимы

Если у вас не так много опыта или у вас нет вышеуказанных деталей, и по какой-то причине вы не можете их купить, вы можете просто подключить любые линии напряжения, которые вы хотите к крокодиловым зажимам. Если вы выбрали этот вариант, я рекомендую использовать изоляцию, чтобы предотвратить КЗ.

Советы и устранение неполадок

  1. Не бойтесь добавлять ингредиенты в коробку: светодиоды, наклейки и т.д.
  2. Убедитесь, что вы используете блок питания ATX. Если это AT или более старый источник питания, у него, скорее всего, будет другая цветовая схема для проводов. Если у вас нет данных о проводке, даже не начинайте никаких работ, иначе вы просто сломаете свой блок.
  3. Если светодиод на передней панели не горит, значит ножки подключены неправильно. Просто поменяйте провода местами и он должен загореться.
  4. Некоторые современные блоки питания имеют провод «Сигнал обратной связи стабилизатора», который должен быть подключен к источнику питания для работы блока.

    Если провод серый, подключите его к оранжевому проводу, если он розовый, подключите его к красному проводу.

  5. Силовой резистор с высокой мощностью может довольно сильно нагреваться; вы можете использовать радиатор, чтобы охладить его, но убедитесь, что он не создает КЗ.

  6. Если вы решили монтировать детали внутрь корпуса, вентилятор можно установить снаружи, чтобы освободить немного места.
  7. Вентилятор может шумно работать, ведь он питается от 12В. Так как это не компьютер, который сильно нагревается, можно обрезать красный провод вентилятора и подключить оранжевый 3,3 В. Следите за температурой после этого.

    Если она слишком большая, подключите обратно красный провод.

Поздравляю! Вы успешно сделали ваш блок питания.

Оригинал: https://masterclub.online/topic/15638-laboratornyi-blok-pitaniya-iz-kompyuternogo-bloka-pitaniya

Бп atx мощный лабораторный бп и зарядник акб

Лабораторный источник питания из блока ATX компьютера

Неожиданно наступила зима и за окном похолодало. А тут ещё бензин какой-то не тот залил. В общем король немецкого автопрома встал, где-то под Москвой как и 67 лет назад его старшие "проотцы". Аккумулятор сел, дальше пешком….

Для зарядки аккумулятора дома нашлась только пара сгоревших блоков ATX.

Сразу добавлю, что эта "зарядка" не предназначена для восстановления, десульфатации и протчих не перспективных шаманских методов, чем занимались наши отцы (и я в том числе) в прошлой жизни из-за крайней убогости быта.

Это просто блок, позволяющий надёжно и наименьшими затратами зарядить "севший", но исправный аккумулятор. Суть его проста и внятна. Он выдаёт на выходе зарядный ток около 5-6 Ампер, при любой активной нагрузке, вплоть до короткого замыкания. При этом напряжение на выходе ни при каких обстоятельствах не превысит заданного значения. Я установил 14,6 вольт.

По порядку для "чайников" о восстановлении блоков, общие правила:

  1. Если предохранитель в порядке, переходим к пункту 4.
  2. Если предохранитель сгорел, то сначала проверяем отсутствие "короткого" на разъёме ~220.
  3. Если "короткое", устраняем, это могут быть силовые транзисторы, диоды, конденсаторы. Заодно советую проверить диоды во вторичной цепи.
  4. После устранения "короткого" выпаиваем предохранитель и вместо него запаиваем "кроватку", если её не установили при изготовлении.
  5. Вместо предохранителя вставляем в "кроватку" заранее подготовленный резистор изготовленный из сгоревшего предохранителя и лампочки на 220 Вольт мощностью 100-200 Ватт.
  6. Лучше, если у Вас найдётся разделительный трансформатор, но если нет, не очень страшно. Достаточно просто не совать пальцы в силовую половину блока. Включаем блок в 220. Замыкаем "зелёный" и "чёрный" провода на большом разъёме. При отсутствии нагрузки исправный АТХ закрутит лопастями пытаясь взлететь. Лампочка (предохранитель) гореть не должна. Если так, можно вместо лампочки вставить предохранитель и приступить к переделке блока, но лучше пока оставить лампочку.
  7. Если лампочка не загорелась но АТХ не "поднимается", проверяем наличие питания микросхемы TL-494 (или её аналога). Если в блоке применена другая микросхема, дальше можно не читать, или читать из любопытства. Итак, на 12 ноге микросхемы (относительно 7-ой) проверяем наличие дежурного питания от 5, до 25 вольт. Если питания нет, значит не работает источник дежурного питания, именуемый в разных источниках как +USB, "дежурка" и т.п. Если +USB нет, тут есть 3 пути, искать неисправность дежурки, запитать TL494 от любого другого БП (адаптера), или пойти в ближайшую мастерскую и купить (попросить) другой АТХ. Дело в том, что "дежурка" сравнительно тяжело поддаётся ремонту. Обычно после замены транзистора или Viper-a, или ещё чего-то вскоре неисправность повторяется. Проблема не столько в сложности поиска неисправности, сколько в самих неисправностях. Это может быть межвитковое в импульсном трансформаторе, не достаточно "быстрый" электролитический конденсатор во вторичной цепи, потеря индуктивности дросселя во вторичной цепи (из-за перегрева феррита), обрыв резистора стартового тока "дежурки" и многое другое, что довольно трудно установить имея под руками только тестер. Но тем, кто потерпеливее пожелаю удачи.
  8. Несколько слов про АТ блок. Дело в том, что АТ поднимаются без "дежурки". И вообще без всякой помощи. В этом смысле они более живучие и, позволю себе вольность, более совершенные. Благодаря некоторым хитростям в схемотехнике силового "полумоста" блок начинает "всхлипывать " совершенно самостоятельно, без всяких "дежурок" и микросхем. В этот момент с 12-и вольтовой обмотки через отдельный диод заряжается конденсатор питания TL-494 (зелёная стрелка на схеме). Обычно 1-2 "всхлипа" и АТ поднимается, продолжая по той же как и в АТХ цепи питать TL-494. В АТХ питание TL-494 после включения осуществляется от "дежурки" затем питание поднимается и как и в АТ производится от +12 вольт. В обоих случаях конденсатор питания заряжается до амплитудного значения напряжения приблизительно +24 вольта.

    Тут не плохо проверить свой тестер подключив его + на 14 вывод TL-494. Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 1% в диапазоне рабочих температур от 0 до 70°С.

  9. Теперь приступаем к вырезанию всего, что мешает нам наслаждаться пейзажем дырчатого гетинакса.
    Вырезаем лишние диодные сборки, дроссели конденсаторы фильтров, все транзисторы обвязки TL-494. Что бы не по-нарезать чего попало, придётся немного углубится в принцип работы АТ-АТХ. Для начала пройдёмся по ногам микросхемы.

Частота внутреннего генератора определяется по формуле:

где R и С это резистор и конденсатор на выводах 6 и 5 соответственно, то есть это не вырезать.

Вывод 14 это выход внутреннего источника опорного напряжения +5 вольт.

Выводы 1,2,15 и 16 это входы 2-х встроенных компараторов, которые пользователь может использовать по своему усмотрению, т.е. управлять шириной выходных импульсов ШИМ.

Оба компаратора совершенно одинаковы с той лишь разницей, что компаратор с выводами 15-16 срабатывает с "задержкой" 80 мВольт.

В попавших мне АТХ этот компаратор не использовался, 16 вывод заземлён, а 15 соединён на Uref, т.е. 14 вывод.

Вывод 13 предназначен для перевода TL-494 в режим управления обратноходовыми однотактными преобразователями. При этом "мёртвое время" может быть увеличено до 96%. В нашем, "двухтактном" случае этот вывод так же соединяется на Uref.

Компаратор на выводах 1-2 мы будем использовать для установки выходного напряжения, для этого на вывод 2 подаём часть Uref, что и сделано в большинстве АТ и АТХ. Обычно это напряжение примерно 2,5 вольт, т.е. с Uref (+5Вольт) через резистивный делитель.

RC цепочка с вывода 2 на вывод 3 ( или ОС) предназначена для ограничения скорости ШИМ при стабилизации напряжения и имеется во всех схемах АТ-АТХ. Её тоже вырезать нельзя.

Рисую упрощённую схему управления выходным напряжением.

Напряжение на выходе БП будет равно Uвых=Uref1(1+Roc/Rm). Теперь Вы должны сами с калькулятором в руках решить из каких резисторов составить делитель. Я это сделал как показано на схеме. Проверьте обязательно, если эта формула у Вас не заработала, значит Вы не всё урезали.

Важно учесть, что без перемотки трансформатора более 18-20 вольт на 12-и вольтовом выходе получить не получится. В принципе БП может дать до 24 вольт, но это при отсутствии нагрузки и полностью "открытой" ШИМ, то есть, когда "мёртвое" время не более 4% от периода.

Без дросселя БП будет чувствовать себя не очень комфортно. Ему будет трудно удержать выходное напряжение. Его будет "плющить и колбасить" как автомобиль с заклинившим амортизатором. Наша задача получить ограничение на уровне 14,6-14,8 Вольта.

Для "убитых" аккумуляторов надо напряжение до 16 (и более) вольт. Для фанатов восстановления можно накрутить и столько.

Это тоже вход компаратора, но с задержкой 120 мВольт. И тут дело даже не в задержке, а в том, что конструктор микросхемы предусмотрел использовать его для регулировки "мёртвого времени". Обычно в схемах АТХ-АТ его используют как "мягкий пуск" и для целей всяких защит. Вот эти защиты Вам и предстоит вырезать.

Работает ОНО так. При включении БП конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5 вольт, что наглухо закрывает выходные ключи микросхемы. Затем конденсатор заряжается через резистор (выв4-земля) и на выводе 4 напряжение падает до нуля.

Это приводит к медленному нарастанию выходного напряжения до момента когда оно стабилизируется ОС по напряжению. В нашем случае вывод 4 целесообразно попутно задействовать для ограничения выходного тока.

По схеме видно, что при увеличении тока в нагрузку увеличивается падение напряжения на измерительных резисторах (4 резистора 0,22 ом), открывается транзистор 733 (такой p-n-p у меня был из выпаянных), что приводит к подъёму напряжения на выводе 4 и так до режима стабилизации тока.

На полной схеме цепь стабилизации тока обведена красным фломастером. Вот так простенько удалось добиться и стабильного тока зарядки и защиты от короткого замыкания на выходе.
 

Кстати, на выходе советую ни каких электролитических конденсаторов не ставить, тогда при "коротком" не будет ни каких брызг и взрывов, вызывающих неприятные ощущения.

Можно применить другой сердечник, например Ш-образный с зазором 0,3 мм. А можно оставить оригинальное кольцо, намотав на нём 20-30 витков тем, что мы размотали или тем, что будет под рукой, диаметром не менее 0,75мм. Я намотал 35 витков в два провода диаметром 0,75мм. Обмотка вложилась в два слоя.

 

…спустя год..

Просматривая даташит на микросхему KA7500 (аналог TL-494) я обнаружил другое, более простое решение стабилизации тока БП. ы предлагают использовать второй компаратор (выв.15,16). С учётом того, что изначально этот компаратор смещён на 80 мВ, получается очень удобное решение.

Мною оно повторено дважды. В приводимой схеме выходное напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей будки. Для зарядки аккумуляторов естественно, можно использовать блок без перемотки, но всё-таки лучше перемотать.

И провод желательно взять по толще, и виточков добавить. 

При расчёте количества витков вторичной обмотки желательно, что бы на ХХ напряжение на выходе моста было больше стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и, соответственно, надёжную стабилизацию.

Странно, но оно работает. А вообще-то не должно. Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в каком-то нет. И вообще это смещение маловато для стабильной работы.
Поэтому я промакетировал подобную ОС на "спицах" и вот что получилось.

Для удобства макетирования я выбрал компаратор LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот теперь всё красиво. Компаратор срабатывает на 6,1 Ампера. Красный луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор 0,15 Ом сделать легче и греться будет меньше, чем 0,3.

Тогда схема чуток меняется.

Перемотка трансформаторов (перемотал 5 штук) ни разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 — 200 градусов и в перчатках аккуратненько расшатываю.

Оригинал: https://radio-bes.do.am/publ/istochniki_pitanija/bp_atx_moshhnyj_laboratornyj_bp_i_zarjadnik_akb/4-1-0-94

Понравилась статья? Поделиться с друзьями:
Тратосфера