Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

— Flyback.org

Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

Темы, которую вы запросили, не существует.

Оригинал: http://flyback.org.ru/viewtopic.php?start=50&t=4032

Радио Схемы

Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

Схема предназначена для того, чтобы подавать сигнал, если растения нуждаются в поливе. Светодиод начинает мигать, если почва в цветочном горшке слишком пересохла, и гаснет при увеличении влажности. Подстроечный резистор R2 позволяет адаптировать чувствительность схемы под различные типы грунта, размеры цветочного горшка и виды электродов.

  • влажность почвы
  • влажность
  • контроль

Обычно транзисторы используются для управления резистивными нагревательными элементами. Но в ряде случаев целесообразнее использовать тепло, выделяемое самим мощным транзистором, ведь большинство транзисторов могут надежно работать при температуре до 100 °C.

И дело не только в желании сэкономить на нагревательном элементе, иногда такому решению просто нет альтернативы. Типичным примером может служить биологическая лаборатория, где очень часто приходится поддерживать на постоянном уровне температуру образцов, находящихся в микрокюветах.

Ограниченный объем, специфическая геометрия кювет и температура, по определению не превышающая 100 °C, стали факторами, стимулировавшими разработку описываемой схемы.

Часто температура паяльника регулируется микроконтроллером, использующим обратную связь от термистора, расположенного вблизи жала паяльника. В статье представлена схема управления паяльником, сделанная только на аналоговых компонентах.

  • регулятор температуры
  • паяльник

Леони и ее семья живут в одном доме с семью другими семьями. Как и многие другие кошки, Леони любит исследовать окрестности, а удовлетворив свое любопытство, она возвращается домой, где тепло, сухо и есть еда. Обычно ей нужно просто подождать перед входом, пока кто-нибудь откроет дверь, и она сможет добраться до внутренней лестницы.

Войти в свою квартиру, однако, ей труднее. Когда она зовет своих хозяев из-за двери, услышать ее никто не может, а кнопка дверного звонка слишком высока, чтобы она могла до нее достать. Но есть одна дверь квартиры, где дверной звонок звонит по волшебству, когда Леони сидит перед ней.

Это моя дверь, так что я могу объяснить, как работает «волшебство».

От простого к сложному и обратно
В [1] описана цифровая паяльная станция (ЦПС) на микроконтроллере (МК) ATtiny13A. На завершающем этапе возник вопрос, как применить в конструкции неиспользуемый второй ОУ. Если он уже есть, надо подыскать ему работу.

Заняться ими заставил очередной подсчет расхода воды: вместо обычных 10 м3 за месяц оказалось 40 м3! Я пошел в туалет на первом этаже и всё понял: практически всё, что заливалось в бачок, тут же и выливалось – запорный резиновый клапан слива снова пропускал так, как будто его вообще не было.

  • микроконтроллер
  • экономия
  • сливной бачок

Забываете выключать потолочный вентилятор в ванной комнате? Сделайте простой таймер, показанный на Рисунке 1. Его можно спрятать от глаз в самом вентиляторе и включать настенным выключателем. Если использовать компоненты, найденные в коробке со старым барахлом, эта схема не будет стоить практически ничего.

При включении сети на конденсаторе фильтра C

Во многих робототехнических приложениях нужны датчики для обнаружения близких или очень близких препятствий. Обычно для этой цели используются отражательные оптроны.

В системе предупреждения о приближении объекта, показанной на Рисунке 1, использованы популярные и недорогие компоненты: таймер LM555 и 14-каскадный КМОП двоичный счетчик/делитель со сквозным переносом и генератором CD4060.

Главным элементом схемы является модуль отражательного фотодатчика CNY70.

  • Инфракрасный датчик. датчик
  • датчик приближения

Описаны энергосберегающие реле-двухполюсники, которые подключают в любом порядке последовательно с нагрузкой и цепочкой нормально замкнутых кнопок. При нажатии на любую из этих кнопок реле включают источник света или иную нагрузку на заданный интервал времени, после чего нагрузка будет отключена.

  • реле
  • энергосберегающее реле
  • освещение

Схема т.н. бипера состоит из генератора на К561ЛЕ5. Звуковой пъезо-излучатель типа ЗП-3 или аналогичные. Подстроечным резистором подбираем на свой вкус тон звука; я настраивал на максимальную резонансную громкость. Диод по питанию защищает от переплюсовки. Микросхема на панели; не забудьте впаять перемычку на плату под микросхемой.

  • звуковой сигнал
  • сигнал
  • автомобильный
  • поворотник

Как показывает практика, 80% свинцовых аккумуляторов выходит из строя из-за явления сульфитации предложенная схема устройства для десульфатации (рис.

1), помогает вернуть к полноценной жизни даже почти “убитые” автомобильные аккумуляторы. Оно формирует короткие импульсы зарядного тока и небольшой разрядный ток в промежутках между ними.

Такой алгоритм десульфатации гораздо эффективнее, чем простой многократный заряд-разряд обычными зарядными устройствами.

  • Десульфатация. аккумулятор
  • автомобильный аккумулятор

Давно уже известен тот факт, что заряд электрохимических источников питания асимметричным током, при соотношении Iзар : Iразр = 10:1, в частности кислотных аккумуляторов, приводит к устранению сульфатации пластин в батарее, т.е. к восстановлению их емкости, что, в свою очередь, продлевает срок службы батареи.

  • зарядник
  • зарядное устройство

Кислотные аккумуляторы "не любят" длительного пребывания без работы. Глубокий саморазряд бывает губителен для них. Если автомобиль ставится на долгосрочную стоянку, то возникает проблема, что делать с аккумулятором. Его либо отдают кому-нибудь в работу, либо продают, что одинаково неудобно.

  • Зарядное устройство
  • зарядка
  • автомобильный аккумулятор

Многие типы электронного оборудования требуют хорошее и чистое питание +12 В при токе до нескольких ампер (например, небольшой компьютер или ноутбук) и хотя в автомобиле есть аккумулятор на 12 В, мгновенные значения напряжения находятся в пределах от 9 до 16 В, а также содержат много шумов. Чтобы питать требовательную электронику, необходимо «очистить» это напряжение.

  • блок питания
  • автомобильный блок питания

← Старые записи

Оригинал: http://radiolabs.ru/index.php?controller=post&action=view&id_post=90

Источник высокого напряжения

Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

Для самостоятельного изготовления флокатора, пистолета порошковой покраски или электростатической коптильни требуется источник высокого напряжения. И если первые два устройства требуют 75-100 киловольт, то высоковольтный генератор для коптильни работает при 15-20.

В сети есть множество схем высоковольтных генераторов сделанных с использованием строчных трансформаторов от мониторов, телевизоров или автомобильных катушек зажигания.

В большинстве своём их схемотехника удручает – как правило это простейшие обратноходовые преобразователи, а значит транзистор в них будет работать в роли кипятильника т.к.

для новичка наверняка не имеющего осциллографа рассчитать снаббер практически не реально.

Схемы из прошлого века на тиристорах с питанием от сети 220 вольт опасны и в случае неосторожности могут привести к печальным последствиям. Мы же сделаем резонансный полумост на ТДКС.

Давайте посмотрим схему:

Список компонентов:

  1. U1 – «IR2153»;
  2. C1 – электролит 470-1000uf 16v, желательно Low Esr;
  3. C2 – керамика 1n;
  4. C3, C4 – керамика 100n;
  5. C5, C6 – полипропилен 470nf 630v;
  6. R1 – многооборотный подстроечный резистор;

Остальные компоненты вопросов думаю не вызывают.

Файл печатной платы: ir2153.

lay6[0,03 MB]

В качестве генератора используется распространённая микросхема IR2153, для работы которой требуются всего несколько деталей в обвязке: времязадающая RC цепочка и конденсатор с диодом для верхнего ключа.

Транзисторы при сборке необходимо установить на небольшие радиаторы, я этого делать не стал т.к. плата нужна лишь для демонстрации. Так же не рекомендую включать устройство без запаянного электролитического конденсатора, может получится ситуация когда через ключи потечет сквозной ток.

Номиналы времязадающей цепи с помощью подстроечного резистора позволяют микросхеме работать в диапазоне частот примерно от 7 до 146kHz. В процессе настройки включать высоковольтный генератор желательно через амперметр для контроля тока, при этом желательно что бы блок питания выдавал не менее 3-х ампер при 12 вольт.

Подстроечным резистором можно пройтись по всему диапазону частот для нахождения резонансных участков, при этом для получения 20 киловольт искровой разряд не должен превышать буквально 1.5 см, а ток потребления при этом должен быть около 0.6-0.8А.

Если добиться таких результатов не удается то есть два варианта. Первый из них «поиграть витками», увеличивая или уменьшая их количество, второй – заменить резонансный конденсатор с 470 на 330 или 220 нанофарад. У меня все заработало сразу после сборки, но как говориться – если вдруг.

Перед намоткой первичной обмотки на ТДКС феррит следует изолировать изолентой или скотчем, мотать следует эмальпроводом 0.6-0.8мм, или (что лучше) сразу двумя-тремя проводами 0.6 параллельно. Провода от трансформатора до платы желательно не более 10 сантиметров.

Не следует забывать что во вторичной обмотке ТДКС как правило находится диод, поэтому умножитель напряжения к нему не подключишь.

Для использования в электростатической коптильне параллельно выходам необходимо поставить конденсатор ~30kV 470pf – 2.2n и выходной токоограничительный резистор.

Оригинал: https://humka.ru/istochnik-vysokogo-napryazheniya

Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

› Кулинария

Все рассмотренные выше генераторы высокого напряжения имели в качестве накопителя энергии конденсатор. Не меньший интерес представляют устройства, использующие в качестве такого элемента индуктивности.

В подавляющем большинстве конструкции подобного рода преобразователей ранних лет содержали механический коммутатор индуктивности. Недостатки такого схемного решения очевидны: это повышенный износ контактных пар, необходимость их периодической чистки и регулировки, высокий уровень помех.

С появлением современных быстродействующих электронных коммутаторов конструкции преобразователей напряжения с коммутируемым индуктивным накопителем энергии заметно упростились и стали конкурентоспособными.

Основой одного из наиболее простых высоковольтных генераторов (рис. 12.1) является индуктивный накопитель энергии.

Рис. 12.1. Электрическая схема высоковольтного генератора на основе индуктивного накопителя энергии.

Генератор прямоугольных импульсов собран на микросхеме 555 (КР1006ВИ1). Параметры импульсов регулируются потенциометрами R2 и R3. Частота импульсов управления также зависит от емкости времязадающего конденсатора С1. Импульсы с выхода генератора подаются через резистор R5 на базу ключевого (коммутирующего) элемента — мощного транзистора VT1.

Этот транзистор в соответствии с длительностью и частотой следования управляющих импульсов коммутирует первичную обмотку трансформатора Т1.

В итоге на выходе преобразователя формируются импульсы высокого напряжения. Для защиты транзистора VT1 (2N3055 — КТ819ГМ) от пробоя желательно параллельно переходу эмиттер — коллектор подключить диод, например, типа КД226 (катодом к коллектору).

Высоковольтный генератор (рис. 12.2), разработанный в Болгарии, также содержит задающий генератор прямоугольных импульсов на микросхеме 555 (К1006ВИ1).

Частота импульсов плавно регулируется резистором R2 от 85 до 100 Гц. Эти импульсы через RC-цепочки поступают на ключевые элементы на транзисторах VT1 и VT2.

Стабилитроны VD3 и VD4 защищают транзисторы от повреждения при работе на индуктивную нагрузку.

Рис. 12.2. Схема генератора высокого напряжения на основе индуктивного накопителя энергии.

Генератор высокого напряжения (рис. 12.2) может быть использован как самостоятельно — для получения высокого напряжения (обычно до 1. 2 кВ), либо как промежуточная ступень «накачки» других преобразователей.

Транзисторы BD139 можно заменить на КТ943В. В качестве ключевых элементов преобразователей с индуктивным накопителем энергии долгие годы использовали мощные биполярные транзисторы. Их недостатки очевидны: довольно высоки остаточные напряжения на открытом ключе, как следствие, потери энергии, перегрев транзисторов.

По мере совершенствования полевых транзисторов последние начали оттеснять биполярные транзисторы в схемах источников питания, преобразователях напряжения.

Для современных мощных полевых транзисторов сопротивление открытого ключа может достигать десятые. сотые доли Ома, а рабочее напряжение достигать 1 . 2 кВ.

На рис. 12.3 приведена электрическая схема преобразователя напряжения, выходной каскад которого выполнен на полевом транзисторе MOSFET. Для согласования генератора с полевым транзистором включен биполярный транзистор с большим коэффициентом передачи.

Рис. 12.3. Электрическая схема генератора высоковольтных импульсов с ключевым полевым транзистором.

Задающий генератор собран на /ШО/7-микросхеме CD4049 по типовой схеме. Как сами выходные каскады, так и каскады формирования управляющих сигналов, показанные нарис. 12.1 — 12.3 и далее, взаимозаменяемы и могут быть использованы в любом сочетании.

Выходной каскад генератора высокого напряжения системы электронного зажигания конструкции П. Брянцева (рис. 12.4) выполнен на современной отечественной элементной базе [12.2].

Рис. 12.4. Схема выходного каскада генератора высокого напряжения П. Брянцева на составном транзисторе.

Рис. 12.5. Электрическая схема генератора высокого напряжения с задающим генератором на основе триггеров Шмитта.

При подаче на вход схемы управляющих импульсов транзисторы VT1 и VT2 кратковременно открываются. В результате катушка индуктивности кратковременно подключается к источнику питания. Конденсатор С2 сглаживает пик импульса напряжения. Резистивный делитель (R3 и R5) ограничивает и стабилизирует максимальное напряжение на коллекторе транзистора VT2.

В качестве трансформатора Т1 использована катушка зажигания Б115. Ее основные параметры: R,=1,6 Ом, l 200 кГц.

Первичная обмотка трансформатора Т1, намотанная на сердечнике от трансформатора строчной развертки, имеет 40 витков диаметром 1,0 мм. Выходное напряжение преобразователя на частотах ниже 5 кГц составляет 20 кВ, в области частот 50. 70 кГц выходное напряжение снижается до 5. 10 кВ.

Выходная мощность высокочастотного сигнала устройства может доходить до 30 Вт. В этой связи при использовании данной конструкции, например, для газоразрядной фотосъемки необходимо принять особые меры по ограничению выходного тока.

Высоковольтный генератор, рис. 12.6, имеет более сложную конструкцию.

Его задающий генератор выполнен на операционном усилителе DA1 (СА3140). Для питания задающего генератора и буферного каскада (микросхема DD1 типа 4049) используется стабилизатор напряжения на 12 Б на интегральной микросхеме DA2 типа 7812.

Предоконечный каскад на комплиментарных транзисторах ѴТ1 и ѴТ2 обеспечивает работу оконечного — на мощном транзисторе ѴТЗ.

Соотношение длительность/пауза регулируют потенциометром R7, а частоту импульсов — потенциометром R4.

Частоту генерации можно изменять ступенчато — переключением емкости конденсатора С1. Начальная частота генерации близка к 20 кГц.

Первичная обмотка доработанного трансформатора строчной развертки имеет 5. 10 витков, ее индуктивность примерно 0,5 мГч. Защита выходного транзистора от перенапряжения осуществляется включением варистора R9 параллельно этой обмотке.

Транзистор 2N2222 можно заменить на КТ3117А, КТ645; 2N3055 — на КТ819ГМ-, BD135 — на КТ943А, BD136 — на КТ626А, диоды 1N4148 — на КД521, КД503 и др. Микросхему DA2 можно заменить отечественным аналогом — КР142ЕН8БЩУ DD1 — К561ТЛ1.

Следующим видом генераторов высоковольтного напряжения являются автогенераторные преобразователи напряжения с индуктивной обратной связью.

Импульсный преобразователь с самовозбуждением вырабатывает пакеты высокочастотных высоковольтных колебаний (рис. 12.7).

Рис. 12.7. Электрическая схема импульсного преобразователя напряжения с самовозбуждением.

Автогенератор импульсов высокого напряжения на транзисторе VT1 получает сигнал обратной связи с трансформатора Т1 и в качестве нагрузки имеет катушку зажигания Т2. Частота генерации — около 150 Гц. Конденсаторы С*, С2 и резистор R4 определяют режим работы генератора.

Трансформатор Т1 выполнен на магнитопроводе 11114×18. Обмотка I состоит из 18 витков провода ПЭВ-2 0,85 мм, намотанных в два провода, а II — из 72 витков провода ПЭЛШО 0,3 мм.

Стабилитрон VD2 укреплен в центре дюралюминиевого радиатора размерами 40x40x4 мм. Этот стабилитрон можно заменить цепочкой мощных стабилитронов с суммарным напряжением стабилизации 150 В. Транзистор VT1 также установлен на радиаторе размерами 50x50x4 мм.

Резонансный преобразователь напряжения с самовозбуждением описан в работе Е. В. Крылова (рис. 12.8). Он выполнен на высокочастотном мощном транзисторе VT1 типа КТ909А.

Трансформатор преобразователя выполнен на фторопластовом каркасе диаметром 12 мм с использованием ферритового стержня 150ВЧ размером 10×120 мм. Катушка L1 содержит 50 витков, L2 — 35 витков провода ЛЭШО 7×0,07 мм. Катушки низковольтной половины устройства имеют по одному витку провода во фторопластовой (политетрафторэтиленовой) изоляции. Они намотаны поверх катушки L2.

Рис. 12.8. Схема резонансного высоковольтного генератора с трансформаторной обратной связью.

Выходное напряжение преобразователя составляет 1,5 кВ (максимальное — 2,5 кВ). Частота преобразования — 2,5 МГц. Потребляемая мощность — 5 Вт. Выходное напряжение устройства изменяется от 50 до 100% при увеличении напряжения питания с 8 до 24 В.

Конденсатором переменной емкости С4 трансформатор настраивают на резонансную частоту. Резистором R2 устанавливают рабочую точку транзистора, регулируют уровень положительной обратной связи и форму генерируемых сигналов.

Преобразователь безопасен в работе — при низкоомной нагрузке высокочастотная генерация срывается.

Следующая схема высоковольтного источника импульсного напряжения с двухкаскадным преобразованием показана на рис. 12.9. Электрическая схема его первого каскада достаточно традиционна и практически не отличается от рассмотренных ранее конструкций.

Отличие устройства (рис. 12.9) заключается в использовании второго каскада повышения напряжения на трансформаторе. Это заметно повышает надежность устройства, упрощает конструкцию трансформаторов и обеспечивает эффективную изоляцию между входом и выходом устройства.

Рис. 12.9. Схема высоковольтного преобразователя с трансформаторной обратной связью и двойным трансформаторным преобразованием напряжения.

Трансформатор Т1 выполнен на Ш-образном сердечнике из трансформаторной стали. Сечение сердечника составляет 16×16 мм. Коллекторные обмотки I имеют 2×60 витков провода диаметром 1,0 мм.

Катушки обратной связи II содержат 2×14 витков провода диаметром 0,7 мм. Повышающая обмотка III трансформатора Т1, намотанная через несколько слоев межслойной изоляции, имеет 20. 130 витков провода диаметром 1,0 мм. В качестве выходного (высоковольтного) трансформатора использована катушка зажигания автомобиля на 12 или 6 В.

К генераторам высокого напряжения с индуктивными накопителями энергии следует отнести и устройства, рассмотренные ниже.

Для получения высоковольтных наносекундных импульсов В. С. Белкиным и Г. И. Шульженко была разработана схема формирователя на дрейфовых диодах и насыщающейся индуктивностью с однотактным преобразователем, синхронизированным с формирователем, а также показана возможность совмещения функций ключа формирователя и преобразователя.

Схема преобразователя, синхронизированного с формирователем, приведена на рис. 12.10; вариант схемы формирователя с раздельными ключевыми элементами приведен на рис. 12.11, а временные диаграммы, характеризующие работу отдельных узлов схемы формирователя, — на рис. 12.12.

Рис. 12.10. Схема формирователя высоковольтных импульсов с общим ключом для преобразователя и формирователя.

Рис. 12.11. Фрагмент схемы формирователя высоковольтных импульсов с раздельными ключами.

Рис. 12.12. Временная диаграмма работы преобразователя.

Задающий генератор прямоугольных импульсов (рис. 12.10) вырабатывает импульсы, отпирающие транзисторный ключ VT1 на время tH и запирающие на время t3 (рис. 12.12). Их сумма определяет период повторения импульсов.

За время tH через дроссель L1 протекает ток Ін.

После запирания транзистора ток Ін через диод VD1 заряжает накопительную емкость формирователя С1 до напряжения Uн, диод VD1 закрывается и отсекает конденсатор С1 от источника питания.

В таблице 12.1 приведены данные по возможному использованию полупроводниковых приборов в формирователе высоковольтных импульсов. Амплитуда формируемых импульсов приведена для низкоомной нагрузки величиной 50 Ом.

Таблица 12.1. Выбор элементов для формирователей высоковольтных импульсов.

Высоковольтный генератор из катушки зажигания, кулера и мосфета – легко и доступно

Всем здравствуйте! В сети множество схем высоковольтных генераторов отличающихся по мощности, по сложности сборки, по цене и доступности компонентов. Данная самоделка собрана из практически бросовых деталей, собрать ее сможет любой желающий.

Собирался этот генератор, скажем так, для ознакомительных целей и всевозможных опытов с электричеством высокого напряжения. Примерный максимум этого генератора 20 киловольт.

Так как в качестве источника питания для этого генератора не используется сетевое напряжение это дополнительный плюс с точки зрения безопасности.

Кому интересно попробую рассказать подробнее. В качестве генератора импульсов используется кулер охлаждения от компьютера или аналогичный на 12 вольт, но с одним условием – в нем должен быть встроенный датчик холла.

Именно датчик холла и будет генерировать импульсы для высоковольтного трансформатора, в качестве которого, в данном случае, используется катушка зажигания от автомобиля.

Выбрать подходящий вентилятор очень просто, как правило, он имеет три ввода.

Оригинал: https://moidom-lublu.ru/kulinariya/kak-sdelat-prostejshij-preobrazovatel-vysokogo-napryazheniya-iz-katushki-zazhiganiya-i-rele

Доработка схемы зажигания автомобиля

Как сделать простейший преобразователь высокого напряжения из катушки зажигания и реле

Самым ответственным моментом при эксплуатации автомобиля является пуск двигателя. Особенно актуален этот вопрос в зимнее время года, когда на улице стоят большие морозы. Все смазочные материалы, в том числе и масло в картере двигателя внутреннего сгорания, теряют вязкость, и создают чрезмерную дополнительную механическую нагрузку на стартер.

Рекомендаций по решению этой проблемы в Интернете представлено великое множество, от подогрева масла в картере двигателя дополнительным нагревателем, до впрыскивания в цилиндры двигателя перед пуском легко воспламеняющихся веществ. Совершенствуются коммутаторы системы зажигания, делают многоискровой режим зажигания, оптимизируют взаимное расположение и форму электродов свечей.

Но все это не дает максимального эффекта по одной простой причине, во время пуска двигателя напряжение бортовой сети автомобиля падает до 9,5 V и соответственно значительно падает величина высокого напряжения на выходе катушки зажигания. Предложенная доработка системы зажигания позволяет устранить этот недостаток.

Принцип работы системы зажигания автомобиля

Рассмотрим часть схемы электрооборудования автомобиля, составляющую систему зажигания. От аккумулятора напряжение положительной полярности, через предохранитель поступает на контакты замка зажигания и реле зажигания.

Когда ключ из замка зажигания автомобиля вынут, все контакты в замке зажигания разомкнуты, и напряжение на систему зажигания не подается. Если ключ вставить в замок зажигания и повернуть его по часовой стрелке на один сектор, контакты в замке зажигания замкнутся и напряжение поступит на обмотку реле зажигания, по обмотке потечет ток, создаст магнитное поле, которое притянет якорь реле.

Контакты реле замкнутся, напряжение питания поступит на низковольтную обмотку катушки зажигания и через нее на коллектор транзистора VT коммутатора.

Пока вал двигателя не вращается, на базу транзистора не поступают открывающие импульсы управления, и он закрыт, ток дальше не течет.

В применяемых в настоящее время схемах зажигания автомобилей, элементов начерченных синим цветом (диод VD1 и конденсатор С1) нет.

Для пуска двигателя необходимо повернуть ключ в замке зажигания по часовой стрелке еще на один сектор. Стартер начнет вращаться и на коммутатор с датчика вращения поступят управляющие импульсы.

Транзистор VT на время 1-2,5 мс откроется и через низковольтную обмотку катушки зажигания пойдет ток. Сердечник катушки начнет намагничиваться, и создаст в высоковольтной обмотке катушки зажигания высокое напряжение.

Величина напряжения будет зависеть от соотношения количества витков в катушках.

Для надежной работы двигателя система зажигания должна создавать высокое напряжение с запасом, величиной не менее 25 кВ. Напряжение, при котором происходит пробой (образуется искра) между электродами в свече составляет 14-17 кВ. Таким образом, должен обеспечивается запас по высокому напряжению около 7 кВ, что гарантирует стабильную искру в свечах при любых условиях запуска двигателя.

Величина высокого напряжения
в момент запуска двигателя автомобиля

При работе двигателя, за счет работы генератора, напряжение в бортовой сети автомобиля обычно составляет 14,1±0,2 В. На первичную обмотку катушки зажигания, за вычетом падения напряжения (1,2 В) на транзисторе VT, поступают импульсы величиной 14,1 В-1,2 В=12,9 В. В этом режиме величина импульсов на вторичной обмотке катушки зажигания для образования искры в свечах составляет 27 кВ.

В момент пуска двигателя напряжение на выводах заряженного аккумулятора может снижаться до 9,5 В, если аккумулятор заряжен не полностью, то напряжение может быть и меньше. Тогда с учетом падения напряжения на транзисторе VT, величина напряжения на первичной обмотке катушки составит 9,5 В-1,2 В=8,3 В, это на 35% меньше, чем напряжение при работающем двигателе.

При этом величина высокого напряжения тоже уменьшится на 35% и составит 17 кВ. Новая свеча создает искру при напряжении 12-17 кВ. Если установлены свечи с напряжением пробоя 17 кВ, то в таком случае искрообразование может быть нестабильным.

Расчеты показали, что даже для нового автомобиля с узлами и деталями системы зажигания, находящимися в исправном состоянии, запаса по высокому напряжению может и не быть.

Что же тогда говорить о системе зажигания автомобиля, находящегося в эксплуатации не один год. Происходит старение изоляции свечей и выгорание ее электродов.

В высоковольтных проводах и катушке зажигания тоже происходит старение изоляции, что приводит к дополнительным потерям. Несколько лет эксплуатируемый аккумулятор тоже вносит свою лепту.

Путь тока от аккумулятора к катушке зажигания проходит по проводам через контакты предохранителя, реле зажигания, соединительные колодки и клеммы. На них тоже происходит падение напряжения.

В дополнение для устойчивого возникновения искры в зазоре свечи при сильно охлажденной воздушно бензиновой смеси требуется подавать на нее более высокое напряжение.

Таким образом, запуск двигателя старого автомобиля с первой попытки при больших морозах существующая схема зажигания обеспечить с гарантией не может.

Последующие попытки запуска двигателя могут полностью разрядить аккумулятор, с чем большинству автолюбителей доводилось сталкиваться.

С проблемой запуска двигателя в дни с большими морозами я столкнулся давно, когда ездил на автомобиле «Ока». Так как двигатель у «Оки» двух цилиндровый, то запустить его, из-за наличия мертвой точки, гораздо сложнее, чем четырехцилиндровый. Менял датчик холла, коммутатор, катушку зажигания, высоковольтные провода, свечи, но достичь уверенного запуска двигателя в морозы так и не получилось.

Проанализировав электрическую схему зажигания, пришел к выводу, что если подключить электролитический конденсатор к выводу катушки зажигания, на который подается +12 В, то все плохие контакты, через которые подается питающее на катушку напряжение наоборот, буду играть положительную роль, так как будут уменьшать разряд конденсатора.

Сначала я установил только конденсатор С1, не хотелось резать провода для впайки диода VD. Пуск двигателя значительно улучшился. После установки диода, который не позволяет разряжаться конденсатору в электропроводку автомобиля при пуске двигателя, «Ока» стала с первого раза, на удивление многим, заводится даже при 25 градусном морозе.

Работает схема следующим образом. Когда вставляется ключ зажигания и поворачивается до первого фиксированного положения, конденсатор С1 через диод VD быстро зарядится от аккумуляторной батареи с учетом падения напряжения на диоде около 1,2 В, до напряжения 11,5 В.

При пуске двигателя, на катушку зажигания будет подано не напряжение с аккумулятора величиной 9,5 В, а напряжение с заряженного конденсатора 11,5 В.

Таким образом высокое напряжение упадет не на 35%, а всего на 20% и высокое напряжение составит не менее 23 кВ, что вполне достаточно для уверенного возникновения в свечах искры.

Эффективность работы схемы можно еще улучшить, если поставить дополнительно автомобильное реле, подключить его обмотку параллельно реле пуска стартера, а пару нормально замкнутых контактов параллельно диоду.

Тогда, когда стартер будет выключен, напряжение с аккумулятора на катушку зажигания будет подаваться, минуя диод. Если в реле стартера есть свободная пара нормально замкнутых контактов, то можно использовать их и не устанавливать дополнительное реле.

Замыкание с помощью реле выводов диода еще повысит высокое напряжение на выходе катушки зажигания на несколько киловольт.

Конструкция и детали

Диод VD1 подойдет любого типа, рассчитанный на ток не менее 8 А и обратное напряжение не менее 25 В. Еще лучше применить диод Шоттки, например 90SQ045 (45 В, 9 А).

Тогда необходимость в установке дополнительного реле отпадает, так как падение на диоде Шоттки составит всего 0,2 В, что и без установки дополнительного реле увеличит высокое напряжение на несколько киловольт.

Такие диоды используют в низковольтном выпрямителе блоков питания компьютеров.

Электролитический конденсатор подойдет любого типа, рассчитанный на напряжение не менее 25 В и емкостью не менее 20000 мкф. Конденсатор должен быть рассчитан на работу в широком диапазоне температур, минус 30-65 градусов Цельсия. Лучше всего подходит конструкция конденсатора с выводами, рассчитанными на винтовое подключение. Я устанавливал конденсатор как на фото.

Если нет подходящего по емкости конденсатора, то можно подключить параллельно, соблюдая полярность, несколько конденсаторов меньшей емкости. При параллельном соединении плюсовые выводы конденсаторов соединяются с плюсовыми, а минусовые с минусовыми. Общая емкость тогда составит сумму всех соединенных параллельно конденсаторов.

Например, есть 4 конденсатора емкостью 4700 мкФ, соединив их параллельно, получим конденсатор емкостью 18800 мкФ.

Что касается реле, то можно применить любое автомобильное реле, имеющее нормально замкнутые контакты.

Конденсатор желательно установить в непосредственной близости с катушкой зажигания, но, для предотвращения его перегрева, на максимально возможном удалении от двигателя.

Место установки должно не допускать попадания влаги на выводы конденсатора во время движения автомобиля.

Предложить готовое решение по размещению диода и конденсатора сложно, так как каждая марка автомобиля имеет оригинальную конструкцию, и место установки деталей приходится выбирать индивидуально.

Вместо конденсатора можно применить кислотный аккумулятор небольшой емкости, например от UPS компьютера. Это еще более лучший вариант, чем установка конденсатора.

Дополнительный аккумулятор будет при работе двигателя постоянно подзаряжаться и благодаря тому, что система зажигания будет питаться от двух аккумуляторов, дополнительный аккумулятор всегда будет полностью заряжен.

При пуске двигателя на систему зажигания будет всегда подаваться напряжение питания более 12 В.

Для безотказного запуска двигателя автомобиль перед наступлением холодов должен быть подготовлен к зимней эксплуатации. Необходимо залить масло в двигатель и коробку передач, предназначенное для работы при низких температурах.

Необходимо в обязательном порядке заменить свечи и фильтры, масляный, воздушный и бензиновый. И конечно самое главное это техническое состояние аккумулятора. Даже если аккумулятор новый, его обязательно нужно зарядить от внешнего зарядного устройства.

Если все эти требования заблаговременно выполнены, то с пуском двигателя в холодное время года проблем не будет.

Двигатель автомобиля рекомендуется запускать в следующем порядке:

  • Необходимо вставить ключ в замок зажигания, повернуть по часовой стрелке на один сектор и убедиться, что все электроприборы отключены. Хотя они при работе стартера должны отключаться автоматически, но, тем не менее, лучше их отключить, чтобы не создавать дополнительную нагрузку на двигатель в первый момент после его пуска.
  • Для приведения холодного аккумулятора в боевое состояние, его нужно прогреть, включив на 20-30 секунд фары или габаритные огни.
  • Если коробка не автоматическая, то обязательно выжать педаль сцепления до упора. При этом будет отключена от двигателя коробка передач, что существенно снизит нагрузку на стартер.
    4. Включить зажигание на полсекунды, чтобы вал двигателя сдвинулся с мертвой точки, и масло смазало трущиеся поверхности двигателя.
  • Повторно включаем зажигание на время не более 3 секунд. Если двигатель не запустился, необходимо выждать до повторного запуска не менее 15 секунд. За это время подогретый еще за счет неудачного пуска двигателя аккумулятор наберется силы. Если за 5-6 попыток с паузами двигатель запустить не удалось и при этом аккумулятор не сел, значит, либо попавшая в механизмы вода замерзла и необходимо отогреть автомобиль, поместив его в теплый гараж. Или возникла неисправность и необходимо обращаться в сервис.
  • Если двигатель автомобиля запустился, то необходимо плавно отпустить педаль сцепления. После прогрева машина готова к поездке.

Оригинал: https://YDoma.info/avtomobil/avtomobil-dorabotka-zazhiganija-puska-dvigatelja.html

Понравилась статья? Поделиться с друзьями:
Тратосфера